Вопросы онкологии, 2021. Том 67, №3

© И.В. Грибкова, А.А. Завьялов, 2021 УДК 616-006.314 DOI 10.37469/0507-3758-2021-67-3-350-360

И.В. Грибкова, А.А. Завьялов

Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы

ГБУ «Научно-исследовательский институт организации здравоохранения и медицинского менеджмента Департамента здравоохранения города Москвы»

В-клеточная неходжкинская лимфома (НХЛ) является наиболее распространённым гематологическим злокачественным новообразованием. Несмотря на усовершенствование иммунохимиотерапии, значительное количество пациентов имеют рефрактерную форму заболевания. CAR Т-клеточная терапия (терапия Т-лимфоцитами с химерным антигенным рецептором (CAR)) считается наиболее перспективной и эффективной терапией для преодоления хеморефрактерной В-клеточной НХЛ. На основании многообещающих результатов, полученных в ходе основных исследований, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) и Европейское агентство по лекарственным средствам (ЕМА) одобрили анти-CD19 CAR Т-клеточную терапию при рецидивирующей/рефрактерной диффузной В-клеточной лимфоме. Тем не менее, остается несколько спорных вопросов и проблем, ожидающих решения, включая оптимальное управление токсичностью, преодоление рецидивов заболевания, возникающих после CAR Т-клеточной терапии и улучшение производственной платформы CAR Т-клеток. В этом обзоре описаны результаты последних клинических исследований и разработок, а также перспективы развития CAR Т-клеточной терапии В-клеточной НХЛ.

Ключевые слова: В-клеточная неходжкинская лимфома, CAR Т-клеточная терапия, химерный антигенный рецептор, тисагенлеклейсел, аксикабтаген силолейсел, лизокабтаген маралейсел

В-клеточная лимфома

Неходжкинская лимфома (НХЛ) является наиболее распространённым гематологическим злокачественным новообразованием. Это общее сборное наименование разнообразной группы лимфом, среди которых диффузная крупноклеточная В-клеточная лимфома (ДКВКЛ) является наиболее распространённым вариантом (30—50% от всех неходжкинских лимфом) и имеет агрессивное клиническое течение [1]. ДКВКЛ

является гетерогенной группой лимфатических опухолей с различными клиническими, морфологическими, иммунофенотипическими, цитогенетическими проявлениями и с разным ответом на терапию.

Во многих наиболее распространённых формах НХЛ опухолевые клетки происходят из линии В-клеток и, следовательно, часто экспрессируют антигены дифференцировки В-лимфоцитов, включая CD20 и CD19. Разработка ритуксимаба — моноклонального антитела, обладающего специфичностью к CD20 антигену, и добавление этого агента к стандартным программам цитотоксической химиотерапии позволили улучшить исходы у пациентов с различными подтипами В-клеточной НХЛ [1, 2]. В настоящее время программы иммунохимиотерапии первой линии на основе антрациклинов, как правило, это схема R-CHOP (ритуксимаб, циклофосфамид, доксорубицин, винкристин и преднизолон), приводят к длительной безрицидивной выживаемости приблизительно 50-60% пациентов с ДКВКЛ. Но у значительного числа пациентов наблюдается рецидив заболевания или первично-рефрактерное течение лимфомы. Для таких пациентов прогнозы остаются плохими [3, 4].

Стандартный подход второй линии — химиотерапия «спасения», сопровождаемая аутологичной трансплантацией гемопоэтических стволовых клеток (аутоТГСК) [2]. Но, хотя ТГСК и обладает потенциалом для лечения пациентов с различными подтипами лимфомы, смертность, связанная с трансплантатом, остается высокой, а хроническая реакция «трансплантат против хозяина» (РТПХ) может оказывать существенное негативное влияние на качество жизни [2].

Первично-рефрактерная ДКВКЛ, т. е. ДКВКЛ, при которой ответ на иммунохимиотерапию первой линии менее, чем частичная ремиссия, связана с особенно плохими результатами: только 23–29% пациентов с первично-резистентными ДКВКЛ отвечают на лечение второй линии [5] с медианой выживаемости без прогрессирования 3 мес. Пациенты с ДКВКЛ, невосприимчивой к терапии второй линии, имеют среднюю общую выживаемость всего 4 мес [5], при этом предполагаемая частота ответа на химиотерапию тре-

тьей линии составляет всего 14% [6]. Прогноз у пациентов с ДКВКЛ, у которых возник рецидив после первоначального ответа на аутоТГСК, также является неутешительным с медианой общей выживаемости 10 мес [7].

Таким образом, эти данные указывают на то, что необходимы новые методы лечения пациентов с ДКВКЛ, обладающие большей эффективностью, особенно для пациентов с рецидивирующими и рефрактерными формами течения заболевания.

Одним из новейших методов, разрабатываемых в настоящее время, является терапия с использованием генетически-модифицированных Т-лимфоцитов больного, экспрессирующих химерные антигенные рецепторы (CAR) к специфическим опухолевым антигенам. Такие клетки получили в англоязычной литературе название САR Т-клетки. Несмотря на высокую стоимость и наличие осложнений в применении данной терапии, многообещающие клинические испытания у больных даже на поздних стадиях злокачественных новообразований позволяют рассчитывать на успешное внедрение этого метода в практику.

Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR)

Химерный антигенный рецептор (CAR)

Терапия САR-лимфоцитами относится к адоптивной иммунотерапии. Адоптивная терапия основана на извлечении лейкоцитов периферической крови пациента, их модификации с целью приобретения ими противоопухолевых свойств, последующей экспансии модифицированных Т-клеток и реинфузии их пациенту.

Цитотоксические CD8+ Т-лимфоциты являются главным эффекторным звеном в адаптивном иммунном ответе на несущие чужеродные антигены клетки организма. Но выделение и наработка нативных специфических Т-лимфоцитов представляется непростой задачей. Кроме того, для цитотоксического действия CD8+ Т-лимфоцитов необходимо наличие на поверхности лизируемых клеток молекул главного комплекса гистосовместимости, чья продукция снижена во многих злокачественных опухолях.

Этих недостатков лишена терапия цитотоксическими Т-лимфоцитами с химерными (состоящими из нескольких доменов) Т-клеточными рецепторами. Продукция химерных рецепторов достигается генно-инженерными методами и позволяет получить *in vitro* большой объём однородных Т-лимфоцитов с заданной специфичностью. Для распознавания клеток-мишеней полученные таким образом Т-лимфоциты не нуждаются в присутствии молекул главного

комплекса гистосовместимости (МНС-I). При этом входящие в состав CAR структуры нормального Т-клеточного рецептора позволяют запускать те же механизмы активации и цитотоксичности, что и при связывании с мишенью обычного рецептора. Введение дополнительных компонентов в структуру рецептора даёт возможность повысить стабильность получаемых лимфоцитов и увеличить синтез ими цитокинов, стимулирующих иммунный ответ [8].

Химерный антигенный рецептор — это рекомбинантный рецептор, дающий возможность Т-лимфоциту активироваться и взаимодействовать с опухолевыми клетками [9]. Молекула САР имеет сложное строение и представлена следующими частями, каждая из которых выполняет определенную функцию:

- таргетный домен, полученный из одноцепочечного вариабельного домена (scFv) моноклонального антитела, необходим для поиска и узнавания опухолевой клетки;
- гибкая шарнирная область обеспечивает подвижность рецептора и способствует более оперативной идентификации мишени;
- трансмембранный домен необходим для закрепления химерного рецептора на поверхности Т-лимфоцита;
- внутриклеточный домен, расположенный непосредственно на внутренней поверхности мембраны иммунной клетки, обеспечивает работу при контакте с опухолевой клеткой, а именно её уничтожение. Данный домен состоит из следующих частей: активирующего сигнального домена, CD3ζ, полученного из Т-клеточного рецептора, отвечающего за синтез молекул перфорина и гранзимов, вызывающих апоптоз опухолевой клетки, а также один или несколько костимулирующих доменов, таких как CD28 или 4-1BB, способствующих пролиферации лимфоцитов и дополнительно активирующих их работу, продлевая срок их жизни в крови.

Cxeмa CAR Т-клеточной терапии

Схема производства САR Т-клеток состоит из нескольких этапов. На первом этапе из крови пациента выделяют лейкоциты, чтобы затем их активировать и размножить в лаборатории. После этого в них доставляют ген, кодирующий конструкцию САR, с использованием ретровирусных или лентивирусных векторов, и генерируются САR Т-клетки. На последнем этапе САR Т-клетки размножают и возвращают в организм пациента. Этот производственный процесс обычно занимает не менее 2–3 нед. Поэтому в период производства САR-Т-клеток часто проводится промежуточная химиотерапия, позволяющая избежать быстрого прогрессирования заболевания и поддержать общее состояние пациента.

Перед инфузией CAR Т-клеток в организм пациента также проводят химиотерапию, сопровождающуюся лимфодеплецией химиотерапия) — устранением собственных клеток, способных снижать активность CAR Т-лимфоцитов. Дело в том, что собственная иммунная система организма и, прежде всего, так называемые регуляторные Т-клетки, подавляет функции Т-хелперов, цитотоксических Т-лимфоцитов и естественных киллеров. LDхимиотерапия уменьшает количество Т-клеток іп vivo, включая регуляторные Т-клетки, и, следовательно, приводит к регуляции синтеза цитокинов, таких как IL-7 и IL-15 [10]. Эти цитокины способствуют размножению Т-клеток, включая CAR Т-клетки, и усиливают противоопухолевую активность CAR Т-клеточной терапии. Наиболее эффективными схемами LD-химиотерапии считаются схемы на основе флударабина [11].

При попадании в организм CAR Т-клетки при помощи внеклеточной части CAR распознают опухолевые клетки и уничтожают их. Преимущество заключается в том, что это может происходить многократно: уничтожив одну мишень, CAR Т-клетка не выходит из строя и продолжает передвигаться по организму в поисках следующей.

CAR Т-клетки исследовали в качестве терапии различных видов опухолей, но наибольшую эффективность они показали для лечения онкогематологических заболеваний [12].

Применение CAR Т-клеточной терапии для лечения ДКВКЛ

Для рецидивирующих/рефрактерных ДКВКЛ наиболее перспективным направлением является САК Т-клеточная терапия препаратами анти-CD19 CAR [13]. CD19 представляет собой белок, экспрессируемый на поверхности В-клеток. Он считается оптимальной терапевтической мишенью, поскольку он равномерно экспрессируется на поверхности В-клеточных злокачественных новообразований, причём исключительно в линии В-клеток, а не в других линиях или тканях. Большинство разработанных в настоящее время САК Т-клеток для терапии В-клеточных НХЛ используют СD19 в качестве терапевтической мишени.

Высокая эффективность анти-CD19 CAR Т-клеточной терапии была подтверждена несколькими исследованиями: начиная с 2010 г. работы проводились в течение 7 лет [14–16]. В 2017 г. на основании результатов данных исследований Управление по контролю за качеством пищевых продуктов и лекарственных средств США (FDA) одобрило первую терапию анти-CD19 CAR Т-клетками для пациентов с реци-

дивирующей/рефрактерной ДКВКЛ после двух или более линий системной терапии [17].

В настоящее время несколько препаратов анти-CD19 CAR Т-клеточной терапии тестируется при В-клеточных злокачественных новообразованиях. Среди них три препарата проверены в наиболее крупномасштабных клинических испытаниях: тисагенлеклейсел, аксикабтаген силолейсел, лизокабтаген маралейсел.

Эффективность анти-CD19 CAR Т-клеточной терапии В-клеточной НХЛ

Тисагенлеклейсел

Тисагенлеклейсел — это CD19-направленная генетически модифицированная аутологичная Т-клеточная иммунотерапия, использующая 4-1ВВ в качестве костимулирующего домена. Она разработана исследователями из Пенсильванского университета (UPenn) в сотрудничестве с Novartis.

Исследователи UPenn провели пилотное исследование тисагенлеклейсела у пациентов с В-клеточной лимфомой [18]. Первичной конечной точкой была частота объективных ответов (ЧОО) через 3 мес после начала терапии. Всего было зарегистрировано 38 пациентов с рецидивирующей/рефрактерной В-клеточной НХЛ. Только 28 из 38 пациентов (73%) получили инфузию CAR Т-клеток. У этих 28 пациентов, ЧОО составила 64% (18 из 28), причем 57% пациентов (16 из 28) достигли полного ответа (ПО). Примечательно, что 4 пациента, у которых наблюдался частичный ответ (ЧО) через 3 мес, достигли ПО через 6 мес после инфузии. Эти данные свидетельствуют о том, что лучший ответ на тисагенлеклейсел у отдельных пациентов можно наблюдать позже, чем при обычной химиотерапии.

Впоследствии было проведено международное исследование II фазы тисагенлеклейсела терапии, рецидивирующей/рефрактерной ДКВКЛ (JULIET) [14, 15, 19]. JULIET — это глобальное испытание CAR Т-клеточной терапии ДКВКЛ, в котором приняли участие 27 центров из 10 стран. В исследование были включены взрослые пациенты (≥18 лет) после двух или более предшествующих линий терапии, критерием исключения было вовлечение центральной нервной системы. Первичной конечной точкой была ЧОО. В общей сложности 165 пациентов были включены в это исследование. Тем не менее, только 111 пациентов были инфузированы CAR Т-клетками. Среди этих 111 пациентов 54 пациента (49%) рецидивировали после трансплантации аутологичных стволовых клеток. Также были включены double-hit и triplehit лимфомы (19 из 70 оцениваемых пациентов;

27%). Среди 93 оцениваемых пациентов ЧОО составила 52% (48/93), при этом ПО составил 40% (37/93). Анализ подгрупп показал, что ЧОО не зависит от предшествующего лечения или других факторов риска, например, от перестройки генов MYC и BCL2. Хотя медиана выживаемости без прогрессирования заболевания (ВБП) составила всего 2,9 мес у всех пациентов, она не была достигнута у пациентов с ПО. Данные о более продолжительном наблюдении были представлены на 60-м ежегодном собрании Американского общества гематологов (ASH) в 2018 г. [20]. Средняя продолжительность ответа и общая выживаемость у пациентов с ПО не были достигнуты в течение средней продолжительности наблюдения, равной 19,3 мес. Безрецидивная выживаемость среди всех респондентов составила 64% как через 12 мес, так и через 18 мес.

Основываясь на этих многообещающих результатах, FDA США одобрило тисагенлеклейсел для терапии рецидивирующей/рефрактерной ДКВКЛ в мае 2018 г. Этот препарат также был одобрен Европейским агентством по лекарственным средствам (ЕМА) в 2018 г.

Аксикабтаген силолейсел

Аксикабтаген силолейсел — это СD19направленная генетически модифицированная аутологичная Т-клеточная иммунотерапия, использующая CD28 в качестве костимулирующего домена. Первоначально он был разработан исследователями Национального института рака (NCI). В настоящее время эта конструкция разрабатывается Kite Pharma, Gilead Sciences и Daiichi Sankyo. Основные данные о терапии аксикабтагеном силолейселом пациентов с рецидивирующей/рефрактерной ДКВКЛ получены из исследования I/II фазы ZUMA-1 [16, 21, 22]. В фазе І 7 пациентов с рефрактерной ДКВКЛ получали инфузию аксикабтагена силолейсела. Объективный ответ был зарегистрирован у 5 из 7 пациентов (71%) в течение месяца после инфузии, причем 4 из 7 пациентов (57%) достигли ПО.

Основываясь на этих результатах, было проведено исследование II фазы [16, 22]. В общей сложности 111 пациентов с рецидивирующей/рефрактерной ДКВКЛ были включены в исследование. Больше чем две трети пациентов были невосприимчивы к предыдущим трём линиям терапии, и у 21% был рецидив в течение 12 мес после аутоТГСК. Всего 101 пациент получил инфузию аксикабтагена силолейсела. Среднее время изготовления САК Т-клеток от лейкафереза до доставки аксикабтагена силолейсела в лечебное учреждение составило 17 дней, что является отно-

сительно коротким периодом по сравнению с другими исследованиями. Отчасти это связано с тем, что группа NCI разработала новую процедуру производства.

В 2019 г. были опубликованы долгосрочные данные наблюдения [22]. ЧОО составляла 83%, при этом ПО наблюдали у 58% пациентов. При среднем периоде наблюдения 27,1 мес, средняя продолжительность ответа составила 11,1 мес, причём средняя продолжительность ответа для пациентов с ПО до сих пор не достигнута. Средняя ВБП составила 5,9 мес. Медиана ВБП пациентов, достигших ПО /ЧО через 3 мес не была достигнута, тогда как медиана ВБП пациентов со стабилизацией заболевания (СЗ) была только 7.3 мес [22]. Примечательно, что 11 из 33 пациентов с ЧО через 1 мес и 11 из 24 пациентов со СЗ через 1 мес, впоследствии достигли ПО. Большинство преобразований произошло через 6 мес после инфузии.

FDA США одобрило аксикабтаген силолейсел для лечения взрослых пациентов с рецидивирующей или рефрактерной В-крупноклеточной лимфомой после двух или более предшествующих линий системной терапии в октябре 2017 г., а ЕМА — в июне 2018 г.

С одобрением аксикабтагена силолейсела возрос интерес к сообщениям об эффективности этой терапии в реальной клинической практике. Такие данные были опубликованы в работах [23, 24]. Исследование [23] включало 294 пациента, 43% из которых не соответствовало критериям включения ZUMA-1. Показатели ЧОО (81%) и ПО (57%) были аналогичны показателям, указанным в ZUMA-1 (83% и 58% соответственно). Однако в исследовании [24], в которое было включено 76 пациентов, данные ЧОО и ПО были ниже, чем сообщённые в исследовании ZUMA-1: 64% и 41% соответственно. Это может быть связано с включением в исследование пациентов с более плохим соматическим статусом. Следовательно, пока не ясно, может ли эффективность аксикабтагена силолейсела быть воспроизведена вне строгих критериев приемлемости клинических испытаний.

Лизокабтаген маралейсел

Исследователи из Онкологического исследовательского центра им. Фреда Хатчинсона (FHCRC), онкологического центра им. Слоана Кеттеринга и Детского научно-исследовательского института в Сиэтле основали предприятие Juno Therapeutics и провели несколько клинических испытаний продуктов анти-CD19 CAR Т-клеточной терапии. Среди них в наиболее крупных клинических испытаниях поздних фаз у пациентов с В-клеточной НХЛ был исследован лизокабтаген маралейсел.

Лизокабтаген маралейсел — это CD19направленная генетически модифицированная аутологичная Т-клеточная иммунотерапия, использующая костимулирующий домен 4-1BB и объединяющая в определенном фиксированном соотношении (1:1) Т-хелперы (CD4+) и Т-киллеры (CD8+).

С января 2016 г. Juno Therapeutics и Celgene проводят многоцентровое исследование лизокабтагена маралейсела в США под названием Transcend NHL001 (предположительная дата окончания исследования — декабрь 2022 г.). В исследование включены 344 пациента с различными подтипами В-клеточной НХЛ, при этом наиболее распространённым гистологическим подтипом является ДКВКЛ [25–27]. Для лимфодеплеции используют комбинацию циклофосфамида и флударабина. В общей сложности на данный момент были оценены результаты терапии 256 пациентов. Показатели ЧОО и ПО составили 73% и 53% соответственно [25].

Основные данные клинических испытаний тисагенлеклейсела, аксикабтагена силолейсела, лизокабтагена маралейсела представлены в таблице.

Токсичность анти-CD19 CAR Т-клеточной терапии В-клеточной НХЛ

К наиболее распространённым побочным эффектам CAR Т-клеточной терапии относятся В-лимфопения, синдром цитокинового шторма (СЦШ) и нейротоксичность [12, 28].

В-клеточная лимфопения является классическим примером on target/off tumor эффекта специфической иммунотерапии, обусловленной экспрессией таргетируемого антигена на поверхности здоровых тканей. Она сохраняется в течение всего срока персистенции анти-CD19 CAR Т-клеток и сопровождается гипогаммаглобулинемией, требующей заместительной терапии внутривенным иммуноглобулином. Данный

эффект не угрожает жизни пациентов и может быть скорректирован отработанными клиническими инструментами. Показано, что восстановление поликлональных В-клеточных популяций до исходного уровня может происходить без рецидива лимфомы [2].

СЦШ — наиболее тяжелый побочный эффект терапии CAR Т-клетками, описанный всеми крупными исследовательскими группами. СЦШ является потенциально жизнеугрожающим состоянием, сопровождающим терапевтическое введение Т-клеток, экспрессирующих CAR [29]. В основе СЦШ лежит системный воспалительный ответ, обусловленный гиперпродукцией провоспалительных цитокинов. Источником цитокинов являются как собственно CAR Т-клетки, так и вторичные эффекторы. Тяжесть течения СЦШ варьирует и может достигать полиорганной недостаточности и летального исхода. Клиника СЦШ включает лихорадку, нарушение дыхательной функции, тахикардию, гипотензию, генерализованные отёки, нарушение сознания, диффузную лимфаденопатию, гепатоспленомегалию и часто эритематозную или зудящую сыпь. Эта симптоматика появляется вскоре после введения модифицированных Т-клеток и нарастает в течение последующих дней: медиана времени появления СЦШ составляла 2-3 дня в ZUMA-1 [16, 22] и в JULIET [14], и 5 дней в TRANSCEND [25]. Недавние исследования предложили несколько возможных факторов риска развития СЦШ: высокий пиковый уровень экспансии CAR Т-клеток, опухолевая нагрузка и др. [30, 31].

В последние годы были опубликованы рекомендации по классификации СЦШ, из которых наиболее распространёнными стали рекомендации Американского общества трансплантации и клеточной терапии (ASTCT). Данное руководство выделяет 4 степени СЦШ: от 1 (легкая) до 4 (опасная для жизни) [32]. В ZUMA-1 (аксикабтаген силолейсел) [16, 22], JULIET (тисаген-

Данные по эффективности анти-CD19 CAR T-	-клеточной терапии НХЛ
--	------------------------

CAR Т-клеточный продукт	Тисагенлеклейсел	Аксикабтаген силолейсел	Лизокабтаген маралейсел
Клиническое исследование	JULIET	ZUMA-1	TRANSCEND
Количество включенных (инфузированных) пациентов	165 (111)	111 (101)	344 (269)
Количество оцениваемых ответов	93	101	256
чоо (по)	52% (40%)	83% (58%)	73% (53%)
Средняя продолжительность ответа	Не достигнута	11,1 мес	Не достигнута
Выживаемость без прогрессирования (ВБП)	12-месячная ВБП: 83% (для пациентов с ПО/ЧО через 3 мес)	24-месячная ВБП: 72% (для пациентов с ПО через 3 мес)	12-месячная ВБП: 65% (для пациентов с ПО)
Общая выживаемость (ОВ)	Расчетная 12-месячная ОВ: 49% (90% для пациентов с ПО)	Расчетная 24-месячная ОВ: 50,5%	Расчетная 12-месячная ОВ: 58% (86% для пациентов с ПО)
Источник	[14, 15]	[16, 22]	[25–27]

леклейсел) [14] и TRANSCEND (лизокабтаген маралейсел) [25] частота возникновения СЦШ любой степени составляла 92%, 58% и 42% соответственно. СЦШ 3 степени наблюдался у 11%, 22% и 2% пациентов, соответственно. В исследованиях, описывающих реальную клиническую практику, тяжелая форма СЦШ развилась у 7% и 17% пациентов соответственно [23, 24].

Было показано, что СЦШ ассоциирован с повышенными уровнями цитокинов, в том числе интерлейкина 6 (IL-6) [33]. Это объясняет, почему тоцилизумаб, антагонист рецептора IL-6, стал препаратом выбора для лечения СЦШ от средней до тяжелой степени [32, 34]. Такая терапия вызывает почти немедленное изменение симптомов СЦШ у большинства пациентов. Важно отметить, что тоцилизумаб, по-видимому, не влияет на эффективность терапии CAR Т-клетками с точки зрения ЧОО, частоты ПО или длительности ответов [34]. В ZUMA-1 (аксикабтаген силолейсел) [16, 22], JULIET (тисагенлеклейсел) [14] и TRANSCEND (лизокабтаген маралейсел) [25] тоцилизумаб использовался у 43%, 14% и 19% пациентов соответственно. В реальной клинической практике тоцилизумаб используется гораздо чаще (в 63% и 67% случаев в исследованиях аксикабтагена силолейсела) [23, 24]. Кроме того, иногда существует потребность в кортикостероидах, поскольку один только тоцилизумаб не всегда может купировать симптомы СЦШ. До недавнего времени кортикостероиды использовались только в тяжёлых случаях СЦШ из-за опасений относительно их подавляющего действия на функцию Т-клеток [34]. Однако становится всё более очевидным, что кортикостероиды можно безопасно использовать для лечения токсичности, связанной с CAR Т-клетками, без ограничения эффективности [23].

Ещё одним серьезным побочным эффектом анти-CD19 CAR Т-клеток является нейротоксичность, проявляющаяся спутанностью сознания, делирием, афазией, миоклонусом, судорогами, галлюцинациями [32]. Механизм развития и прогностические факторы нейротоксичности не установлены. Часто данные побочные явления прекращаются спонтанно без всякого лечения [35]. Однако серьезность симптомов может быстро колебаться, что требует тщательного мониторинга пациента. Это особенно важно для выявления очень редкого, но опасного для жизни осложнения — отека мозга [34]. У части пациентов нейротоксичность совпадает по времени с развитием СЦШ, однако может наблюдаться изолированно. Обычно тяжелую нейротоксичность, совпадающую по времени с СЦШ, лечат с использованием тоцилизумаба и стероидов, а нейротоксичность в отсутствии СЦШ лечат только кортикостероидами. Однако, IL-6, повидимому, не играет важной роли в развитии нейротоксичности, т.к. в моделях на животных было показано, что терапия тоцилизумабом не оказывает существенного влияния на развитие данных симптомов [36]. Недавно группы исследователей продемонстрировали в моделях на животных, что IL-1, продуцируемый активированными макрофагами, играет важную роль в патофизиологии нейротоксичности, связанной с CAR Т-клеточной терапией [36, 37]. Эти данные говорят о том, что, возможно, блокада IL-1 будет эффективна в устранении симптомов нейротоксичности.

Нейротоксичность, по-видимому, чаще встречается при применении аксикабтагена силолейсела (67% случаев в ZUMA-1 [16, 22]) по сравнению с тисагенлеклейселом (21% в JULIET [14]) и лизокабтагеном маралейселом (30% в TRANSCEND [25]).

Проблемы и перспективы развития

CAR Т-клеточная терапия демонстрирует значительную эффективность у пациентов с рецидивирующей/рефрактерной ДКВКЛ. Тем не менее, очевидно, что метод только развивается, и некоторые проблемы ещё предстоит решить. Главным плюсом данной терапии является её результативность, а именно: десятикратный рост частоты ремиссии и уменьшение риска летального исхода более чем на 70% [9]. Однако необходимо дальнейшее совершенствование эффективности терапии: показатель общей выживаемости в течение полутора лет равняется 50%, это огромная цифра, но стоит стремиться к её увеличению [9]. К недостаткам метода можно отнести высокую стоимость, сложность изготовления CAR Т-клеток, низкую доступность метода, высокую вероятность развития серьёзных побочных эффектов. Таким образом, CAR Т-клеточная терапия нуждается в совершенствовании с точки зрения безопасности и эффективности, а также улучшения производства CAR Т-клеток.

Управление токсичностью

В области безопасности наиболее ожидаемым новшеством является интеграция в САR Т-лимфоциты молекулярных механизмов, позволяющих «выключать» терапевтические клетки в случае развития нежелательных побочных эффектов. Одним из способов такого «выключения» служит трансдукция Т-лимфоцитов так называемыми суицидальными генами, продукты которых под действием специфических малых молекул запускают апоптоз Т-лимфоцитов

[38]. Также в борьбе с нежелательными явлениями поможет создание системы, позволяющей «включать» терапевтические клетки только под воздействием низкомолекулярных димеризующих соединений: CAR Т-клетки смогут активироваться только в присутствии мишени и этих соединений, чем обеспечивается обратимый и дозируемый контроль [39]. Необходимо, однако, отметить, что обе эти системы пока находятся на стадии проверки концепции.

Для преодоления проблемы on target/off tumor-эффекта (реакции против неопухолевой мишени) первый шаг должен быть сделан ещё на этапе отбора антигена-мишени. Прежде всего, необходимо проводить поиск тех антигенов, которые присутствуют преимущественно на трансформированных клетках. Также ценной может быть информация о часто возникающих мутациях, формирующих новые эпитопы на поверхности опухолевых клеток [40]. К новым стратегиям преодоления on target/off tumor-эффекта относится метод, суть которого заключается в экспрессии на поверхности клетки двух химерных рецепторов, имеющих разную специфичность и разные сигнальные последовательности [40]. Такие CAR Т-клетки способны очень точно отличать клетки-мишени с коэкспрессией двух целевых антигенов (клетки опухоли) от клеток, экспрессирующих один из двух маркеров (нормальные клетки), и таким образом обеспечивать локальное уничтожение опухоли без риска проявления off tumor-активности по отношению к здоровым тканям. Однако эффективность такого подхода в значительной степени будет зависеть от точного соблюдения баланса сигналов от обоих рецепторов. Таким образом, сильная сторона этой системы — повышенная специфичность неразрывно связана с серьёзным недостатком: сниженной устойчивостью к ускользанию опухолевых клеток от иммунного надзора.

Увеличение эффективности

Были выявлены два основных механизма рецидива после терапии CAR Т-клетками: рецидивы из-за плохой персистенции и истощения CAR Т-клеток и рецидивы из-за потери или подавления целевого антигена [41].

Истощение CAR Т-клеток может быть связано с повышенной экспрессией молекул иммунных контрольных точек PD-1/ PD-L1 [16]. PD-1 представляет собой мембранный белок, биологическая функция которого заключается в поддержании Т-клеточного ответа в рамках физиологического диапазона. В ответ на цитолитическую и эффекторную функции Т-клеток рецептор PD-1 регулирует их активацию посредством взаимодействия со своими лигандами

PD-L1 и -L2, в результате чего запускается апоптоз CD8+ цитотоксических Т-лимфоцитов [42]. Таким образом, высокая экспрессия PD-1 может приводить к супрессии иммунного ответа. Поэтому было предположено, что блокада PD-1/ PD-L1 может помочь восстановить функцию истощённых CAR Т-клеток.

В работах последних лет представлены данные об эффективности терапии CAR Т-клетками совместно с пембролизумабом [43, 44] или ниволумабом [45, 46] (человеческими моноклональными антителами, селективно блокирующими взаимодействие между PD-1 и его лигандами PD-L1 и PD-L2), а также атезолизумабом (антителом против PD-L1) у пациентов с рецидивирующей/рефрактерной ДКВКЛ. Были получены клинически значимые ответы, включая полные ответы, у пациентов с прогрессированием на фоне CAR Т-клеточной терапии. Причём у большинства пациентов наблюдается увеличение количества CAR Т-клеток при добавлении терапии ингибиторами иммунных контрольных точек. В настоящее время проводится несколько исследований комбинированной терапии САР Т-клетками с ингибиторами иммунных контрольных точек [1, 28].

Возможным решением проблемы потери экспрессии целевого антигена опухолевыми клетками является создание биспецифических CAR Т-клеток [12]. Так, для контроля В-клеточных новообразований предполагается комбинированное таргетирование CD19, CD22, CD20 и других линейно-специфических молекул. Fry и соавт. были первыми, кто установил, что пациенты, у которых возник рецидив после анти-CD19 CAR Т-клеточной терапии, могут достигать ремиссии заболевания в результате терапии CAR Т-клетками, нацеленными на альтернативный антиген: CD22 [47]. Это способствовало разработке двойных антиген-ориентированных подходов для преодоления утечки антигена [48]. Несколько клинических испытаний САР. Т-клеток, исследующих комбинированное нацеливание CD19 и другого антигена, такого как CD22, CD123 или CD20, в настоящее время были начаты у пациентов со злокачественными В-клеточными опухолями [49, 50].

Иммунологическое отторжение является ещё одной потенциальной проблемой, которая может ограничивать терапевтическую эффективность САК Т-клеток. Большинство САК содержат вариабельные области, полученные из мышиных антител, поэтому эти пептидные последовательности являются потенциально иммуногенными и вызывают частичную элиминацию САК Т-клеток в организме человека [51]. Кроме того, соединения между различными доменами САК представляют собой искусственные аминокислотные

последовательности, которые также могут быть иммуногенными. Снижение иммуногенности CAR может быть особенно важным, если нужно вводить несколько доз CAR Т-клеток, потому что после первой дозы может генерироваться иммунологическая память, что приведёт к существенному снижению противоопухолевой активности последующих доз. CAR с гуманизированными или полностью человеческими областями антител могут иметь пониженные уровни иммуногенности, что может снизить вероятность разрушения CAR Т-клеток иммунной системой хозяина и, таким образом, способствовать повышению эффективности CAR Т-клеточной терапии. CAR с областями антител человека были разработаны, и в настоящее время тестируются у пациентов с ОЛЛ или НХЛ [52, 53].

Кроме того, активность CAR Т-клеток потенциально может быть увеличена путём введения фармацевтических агентов. Например, было показано, что ингибитор тирозинкиназы ибрутиниб усиливает противоопухолевую эффективность CAR Т-клеток на модели животных [54]. Введение IL-15 после инфузии CAR Т-клеток также может иметь клиническую пользу, учитывая связь между высоким уровнем IL-15 в сыворотке и ремиссиями у пациентов с лимфомой, проходящих терапию CAR Т-клетками [35].

Улучшение производства CAR Т-клеток

Улучшение производственной платформы CAR Т-клеток также является очень важным, так как позволяет пациентам получить более легкий доступ к этому лечению. В клинических исследованиях в среднем только 70% пациентов получали инфузию CAR Т-клеток. Отчасти это связано с относительно длительным сроком их производства (в исследовании JULIET [14] среднее время от регистрации до вливания составило 54 дня). Во время изготовления CAR Т-клеток пациенты получают обычную химиотерапию, которая часто является неэффективной. Следовательно, быстрое производство крайне важно. Ранее изготовление CAR Т-клеток включало несколько этапов, некоторые из которых выполнялись вручную. Недавно была разработана автоматизированная система быстрого производства, которая занимает от 7 до 14 дней [55, 56].

Другим решением для сокращения времени ожидания производства является создание готового банка CAR Т-клеток. Пациенты и врачи вынуждены ждать длительное время, так как CAR Т-клетки изготавливаются на заказ для каждого пациента. Кроме того, существует риск сбоя производства, особенно у пациентов,

прошедших предварительное лечение, которые не имеют адекватных здоровых Т-клеток. Недавно была разработана аллогенная автономная анти-CD19 CAR Т-клетка под названием UCART19 [57]. С помощью методов генной инженерии создана конструкция, позволяющая избежать реакции «трансплантат против хозяина». В настоящее время продолжается І фаза исследования UCART19 у пациентов с ОЛЛ [58]. Последние достижения в технологии редактирования генов могут привести к созданию в будущем совершенных готовых аллогенных САR Т-клеток.

Выводы

Технология использования CAR Т-клеток — это метод, показавший обнадёживающие результаты терапии В-клеточных НХЛ. Тем не менее, необходимо дальнейшее развитие метода для решения спорных вопросов и проблем. Ближайшие годы покажут, сможет ли эта технология заменить существующую терапию В-клеточных лимфом, удастся ли найти эффективные способы управления токсичностью, а также упростить и удешевить процедуру создания терапевтических клеток, благодаря разработке новых методик.

Конфликт интересов

Авторы заявляют об отсутствии в статье конфликта интересов.

Финансирование

Исследование не имело спонсорской поддержки.

ЛИТЕРАТУРА

- Makita S, Imaizumi K, Kurosawa S, Tobinai K. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges // Drugs in Context 2019;8:212567. https://doi.org/10.7573/ dic.212567
- Brudno JN, Kochenderfer JN. Chimeric Antigen Receptor T-cell Therapies for Lymphoma // Nat Rev Clin Oncol. 2018 Jan;15(1):31–46. https://doi.org/10.1038/nrclinonc.2017.128
- Martelli M, Ferreri AJ, Agostinelli C et al. Diffuse large B-cell lymphoma // Crit. Rev. Oncol. Hematol. 2013;87:146–171. https://doi: org/10.1016/j.critrevonc.2012.12.009
- Feugier P, Van Hoof A, Sebban C et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte // J. Clin. Oncol. 2005;23:4117–4126. https://doi.org/10.1200/JCO.2005.09.131
- Elstrom RL, Martin P, Ostrow K et al. Response to second-line therapy defines the potential for cure in patients with recurrent diffuse large B-cell lymphoma: implications for the development of novel

- therapeutic strategies // Clin. Lymphoma Myeloma Leuk. 2010;10:192–196. https://doi: org/10.3816/ CLML.2010.n.030. PMID:20511164
- Seshadri T, Stakiw J, Pintilie M et al. Utility of subsequent conventional dose chemotherapy in relapsed/refractory transplanteligible patients with diffuse large B-cell lymphoma failing platinum-based salvage chemotherapy // Hematology 2008;13:261–266. https://doi.org/10.1179/102453308X343527
- Van Den Neste E, Schmitz N, Mounier N et al.Outcomes of diffuse large B-cell lymphoma patients relapsing after autologous stem cell transplantation: an analysis of patients included in the CORAL study // Bone Marrow Transplant. 2017;52:216–221. https://doi.org/10.1038/ bmt.2016.213
- Emtage PC, Lo AS, Gomes EM et al. Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation // Clin Cancer Res. 2008;14(24):8112–8122. https://doi.org/10.1158/1078-0432.CCR-07-4910
- 9. Штыров Е.М., Зотов Р.А., Лапштаева А.В. CAR Т клеточная терапия как современный метод лечения онкологических заболеваний // Бюллетень науки и практики. 2019;5(5):121–127. https: //doi. org/10.33619/2414 2948/42/16./ [Shtyro E., Zotov R., Lapshtaeva, A. (2019). CAR T cell Therapy as a Modern Method for the Treatment of Oncological Diseases // Bulletin of Science and Practice, 2019;5(5):121–127. https: // doi: org/10.33619/2414 2948/42/16. (in Russian)].
- Klebanoff CA, Khong HT, Antony PA et al. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cellmediated tumor immunotherapy // Trends Immunol. 2005;26:111–117. https://doi.org/10.1016/j. it.2004.12.003
- Turtle CJ, Hanafi LA, Berger C et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptormodified T cells // Sci Transl Med. 2016;8:355ra116. https://doi:org/10.1126/scitranslmed.aaf8621
- 12. Павлова А.А, Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы // Онкогематология 2017;12(1):17—32. https: // doi: org/10.17650/1818-8346-2017-12-1-17-32/ [Pavlova A.A., Maschan M.A., Ponomarev V.B. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors // Oncohematology 2017;12(1):17–32. https://doi.org/10.17650/1818-8346-2017-12-1-17-32 (in Russian)].
- Makita S, Yoshimura K, Tobinai K. Clinical development of anti-CD19 chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma // Cancer Sci. 2017;108:1109–1118. https://doi.org/10.1111/cas.13239
- Schuster SJ, Bishop MR, Tam CS et al. JULIET Investigators. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma // N Engl J Med. 2019;380:45–56. https://doi.org/10.1056/NEJMoa1804980
- 15. Schuster SJ, Bishop MR, Tam C et al. Global pivotal phase 2 trial of the CD19-targeted therapy CTL019 in adult patients with relapsed or refractory (R/R) diffuse

- large B-cell lymphoma (DLBCL) An interim analysis // Hematol. Oncol. 2017;35:27. https://doi:org/10.1002/hon.2437_6
- Neelapu SS, Locke FL, Bartlett NL et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma // N Engl J Med. 2017;377:2531–2544. https: // doi: org/10.1056/NEJMoa1707447
- FDA approves axicabtagene ciloleucel for large B-cell lymphoma. Approved drugs. U.S. Food and Drug Administration. https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm581296.htm. Accessed September 30, 2018.
- Schuster SJ, Svoboda J, Chong EA et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas // N Engl J Med. 2017;377:2545–2554. https://doi.org/10.1056/ NEJMoa1708566
- 19. Borchmann P, Tam CS, Jäger U et al. An updated analysis of JULIET, a global pivotal phase 2 trial of tisagenlecleucel in adult patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLB-CL). Abstract S799. The 23rd Congress of European Hematology Association (EHA), Stockholm, Sweden. https: //learningcenter.ehaweb.org/eha/2018/stockholm/214521/peter. borchmann.an.updated.analysis. of.juliet.a.global.pivotal.phase.2.trial.html. Accessed September 30, 2018.
- Schuster SJ, Bishop MR, Tam C et al. Sustained disease control for adult patients with relapsed or refractory diffuse large B-cell lymphoma: an updated analysis of Juliet, a global pivotal phase 2 trial of tisagenlecleucel. ASH annual meeting; San Diego 2018; Dec 1–4 [abstract #1684]. https://ash.confex.com/ash/2018/webprogram/Paper115252.html. Accessed January 8, 2019.
- Locke FL, Neelapu SS, Bartlett NL et al. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma // Mol Ther. 2017;25:285–295. https://doi:org/10.1016/j. ymthe.2016.10.020
- Locke FL, Ghobadi A, Jacobson CA et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial // Lancet Oncol. 2019;20:31–42. https://doi.org/10.1016/S1470-2045(18)30864-7
- 23. Nastoupil LJ, Jain MD, Spiegel JY et al. Axicabtagene ciloleucel (axi-cel) CD19 chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory large B-cell lymphoma: Real world experience // Blood 2018;132:91. https://doi:org/10.1182/BLOOD-2018-99-114152
- 24. Jacobson CA, Hunter B, Armand P et al. Axicabtagene ciloleucel in the real world: Outcomes and predictors of response, resistance and toxicity // Blood 2018;132:92. https://doi:org/10.1182/blood-2018-99-117199
- Abramson JS, Palomba ML, Gordon LI et al. Pivotal safety and effcacy results from Transcend NHL 001, a multicenter phase 1 study of lisocabtagene maraleucel (liso-cel) in relapsed/refractory (R/R) large B cell lymphomas // Blood 2019;134:241. https://doi: org/10.1182/ blood-2019-127508
- Abramson JS, Palomba ML, Gordon LI et al. CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T-cell product JCAR017 (TRAN-SCEND NHL001) // J. Clin. Oncol. 2017;35:7513. https: // doi: org/10.1200/JCO.2017.35.15_suppl.7513

- Abramson J, Palomba ML, Gordon L et al. High CR rates in relapsed/refractory (R/R) aggressive B-NHL treated with the CD19-directed CAR T cell product JCAR017 (TRANSCEND NHL 001) // Hematol. Oncol. 2017;35:138. https://doi.org/10.1200/JCO.2017.35.15 suppl.7513
- Roex G, Feys T, Beguin Y et al. Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies:
 An Update of the Pivotal Clinical Trial Data. Pharmaceutics. 2020;12(2):194. Published 2020 Feb 24. https://doi.org/10.3390/pharmaceutics12020194
- Davila ML, Riviere I, Wang X et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia // Sci Transl Med 2014;6(224):224ra25. https://doi.org/10.1126/scitranslmed.3008226
- Hay KA, Hanafi LA, Li D et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptormodified T-cell therapy // Blood. 2017;130:2295–2306. https://doi.org/10.1182/blood-2017-06-793141
- Frey N. Cytokine release syndrome: who is at risk and how to treat // Best Pract Res Clin Haematol. 2017;30:336– 340. https://doi: org/10.1016/j.beha.2017.09.002
- 32. Lee D, Santomasso B, Locke F, Ghobadi A, Turtle CJ, Brudno JN, Maus MV, Park JH, Mead E, Pavletic S et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells // Biol. Blood Marrow Transplant. 2019;25:625–638. https://doi.org/10.1016/j.bbmt.2018.12.758
- Neelapu SS, Tummala S, Kebriaei P et al. Chimeric antigen receptor T-cell therapy assessment and management of toxicities // Nat. Rev. Clin. Oncol. 2018, 15, 47–62. https://doi.org/10.1038/nrclinonc.2017.148
- 34. Lee DW, Gardner R, Porter DL et al. Current concepts in the diagnosis and management of cytokine release syndrome // Blood 2014;124:188–195. https://doi.org/10.1182/blood-2014-05-552729
- 35. Kochenderfer JN, Somerville RPT, Lu T et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels // J. Clin. Oncol. 2017;35:1803–1813. https://doi.org/10.1200/JCO.2016.71.3024
- 36. Norelli M, Camisa B, Barbiera G et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells // Nat. Med. 2018, 24:739–748. https://doi.org/10.1038/ s41591-018-0036-4
- Giavridis T, van der Stegen SJC, Eyquem J et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade // Nat Med. 2018;24:731–738. https://doi.org/10.1038/s41591-018-0041-7
- Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer // Front Pharmacol 2014;5:254. https://doi:org/10.3389/ fphar.2014.00254
- Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small moleculegated chimeric receptor // Science. 2015;350:aab4077. https://doi.org/10.1126/science.aab4077
- 40. Кулемзин С.В., Кузнецова В.В., Мамонкин М и др. CAR Т-клеточная терапия: баланс эффективности и безопасности // Молекулярная биология.

- 2017;51(2):274–287. https: // doi: org/10.7868/S0026898417020148/ [Kulemzin S.V., Kuznetsova V.V., Mamonkin M. et al. CAR T-cell therapy: a balance of efficacy and safety // Molecular biology. 2017;51 (2):274–287. https: // doi: org/10.7868/S0026898417020148 (in Russian)].
- Xu X, Sun Q, Liang X et al. Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies // Front. Immunol. 2019;10:2664. https://doi.org/10.3389/fimmu.2019.02664
- Latchman Y, Wood C R, Chernova T. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation // Nat Immunol 2001;2(3):261-8. https://doi.org/10.1038 / 85330
- 43. Chong EA, Melenhorst JJ, Lacey SF et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR // Blood. 2017;129:1039–1041. https: // doi: org/10.1182/ blood-2016-09-738245
- 44. Ardeshna KM, Marzolini MAV, Norman J et al. Phase 1/2 study of AUTO3 the first bicistronic chimeric antigen receptor (CAR) targeting CD19 and CD22 followed by an anti-PD1 in patients with relapsed/refractory (r/r) diffuse large B cell lymphoma (DLBCL): Results of cohort 1 and 2 of the Alexander study // Blood 2019;134:246. https: // doi: org/10.1182/ blood-2019-122724
- 45. Hill BT, Roberts ZJ, Xue A et al. Rapid tumor regression from PD-1 inhibition after anti-CD19 chimeric antigen receptor T-cell therapy in refractory diffuse large B-cell lymphoma // Bone Marrow Transplant. 2019;55:1184-1187. https://doi.org/10.1038/s41409-019-0657-3
- Cao Y, Lu W, Sun R et al. Anti-CD19 chimeric antigen receptor T cells in combination with nivolumab are safe and effective against relapsed/refractory B-cell non-hodgkin lymphoma // Front. Oncol. 2019;9:767. https://doi.org/10.3389/fonc.2019.00767
- 47. Fry TJ, Shah NN, Orentas RJ et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy // Nat. Med. 2018;24:20–28. https: // doi: org/10.1038/ nm.4441
- Shah N, Maatman T, Hari P, Johnson B. Multi targeted CAR-T cell therapies for B-cell malignancies // Front. Oncol. 2019;9:146. https://doi.org/10.3389/fonc.2019.00146
- Hill L, Lulla P, Heslop HE. CAR-T cell therapy for non-Hodgkin lymphomas: A new treatment paradigm // Adv. Cell Gene Ther. 2019, 2, e54
- 50. Jacoby E, Shahani SA, Shah NN. Updates on CAR T-cell therapy in B-cell malignancies // Immunol. Rev. 2019;290:39–59. https://doi:org/10.1002/acg2.54
- 51. Turtle CJ, Hanafi LA, Berger C et al. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci // Transl Med. 2016;8:355ra116. https://doi:org/10.1126/scitranslmed.aaf8621
- 52. Alabanza L, Pegues M, Geldres C et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains // Mol Ther. 2017;25:2452–2465. https://doi.org/10.1016/j.ymthe.2017.07.013
- 53. Sommermeyer D, Hill T, Shamah SM et al. Fully human CD19-specific chimeric antigen receptors for T-cell

- therapy // Leukemia. 2017;31:2191–2199. https://doi.org/10.1038/leu.2017.57
- 54. Ruella M, Kenderian SS, Shestova O et al. The addition of the BTK inhibitor ibrutinib to anti-CD19 chimeric antigen receptor T Cells (CART19) improves responses against mantle cell lymphoma // Clin. Cancer Res. 2016;22:2684–2696. https://doi.org/10.1158/1078-0432.CCR-15-1527
- Lu TL, Pugach O, Somerville R et al. A rapid cell expansion process for production of engineered autologous CAR-T cell therapies // Hum Gene Ther Methods. 2016;27:209– 218. https: // doi: org/10.1089/hgtb.2016.120
- 56. Mock U, Nickolay L, Philip B et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy // Cytotherapy. 2016;18:1002–1011. https: // doi: org/10.1016/j.jcyt.2016.05.009
- 57. Qasim W, Zhan H, Samarasinghe S et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells // Sci Transl Med. 2017;9(374):pii:eaaj2013. https://doi.org/10.1126/ scitranslmed.aaj2013
- Eyquem J, Mansilla-Soto J, Giavridis T. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection // Nature. 2017;543:113–117. https://doi:org/10.1038/nature21405

Поступила в редакцию 17.11.2020 г.

I.V. Gribkova, A.A. Zavyalov

Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges

State Budgetary Institution «Research Institute for Healthcare Organization and Medical Management of Moscow Healthcare Department»

B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignant neoplasm. Despite the improvement of immunochemotherapy, a significant number of patients have a refractory form of the disease. CAR T-cell therapy (therapy with T-lymphocytes with a chimeric antigen receptor (CAR)) is considered the most promising and effective therapy for overcoming chemorefractory B-cell NHL. Based on promising results from key studies, the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have approved anti-CD19 CAR T-cell therapy for relapsing / refractory diffuse B-cell lymphoma. However, several controversial issues remain, including the optimal management of toxicity, overcoming relapses after CAR T-cell therapy, and improving the production platform of CAR T-cells. This review describes the results of recent clinical research and development, as well as the prospects for the development of CAR T-cell therapy for B-cell NHL.

Key words: B-cell non-Hodgkin lymphoma, CAR T-cell therapy, chimeric antigen receptor, tisagenlecleucel, axicabtagene ciloleucel, lisocabtagene maraleucel