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Aim. Survival prediction in brain cancer is critical for 
treatment planning and patient outcomes. This study aimed 
to develop a prognostic model for brain cancer survival using 
supervised machine learning approaches. The model integrat-
ed demographic, clinical, immunohistochemical, and genomic 
data.

Materials and Methods. We retrospectively analyzed 
149 patients with intracranial tumors who underwent surgery. 
Demographic and clinical data were systematically collect-
ed. Tumor and adjacent tissues underwent histopathological 
and immunohistochemical analysis for GST-P, GST-T, GST-
M, CYP1A1, CYP1B1, MDR, and p53 expression. Genomic 
DNA from tumors was analyzed for GSTM1, GSTT1, and p53 
genotypes. Models were developed using decision tree, Naïve 
Bayes, and SVM algorithms in Python. Models were com-
pared based on accuracy, precision, sensitivity, and F-measure 
metrics.

Results. The overall postoperative survival rate was 65 %. 
Significant differences in protein expression were observed be-
tween cancerous and normal tissues for GST-P, GST-T, GST-M, 
CYP1A1, CYP1B1, MDR, and p53. GST-M1 null genotype was 
associated with brain tumor development. The decision tree 
model achieved the highest accuracy (84 %) among models 
integrating demographic, clinical, immunohistochemical, and 
genetic data. Precision and sensitivity varied across models, 
with the decision tree showing acceptable performance.

Conclusion. Decision tree models are effective for predicting 
brain cancer survival, especially with limited datasets, using de-
mographic, clinical, immunohistochemical, and genotypic variables.

Цель. Прогнозирование выживаемости при раке голов-
ного мозга играет ключевую роль в планировании лечения 
и определении прогноза для пациентов. Целью исследова-
ния было разработать модель прогнозирования выживае-
мости при раке головного мозга с использованием методов 
машинного обучения с контролем со стороны специалиста. 
Модель объединила демографические, клинические, имму-
ногистохимические и генетические данные.

Материалы и методы. Мы провели ретроспективный 
анализ данных 149 пациентов с внутричерепными опухоля-
ми, которые перенесли хирургическое вмешательство. Были 
систематически собраны демографические и клинические 
данные. Гистопатологический и иммуногистохимический 
анализы опухоли и прилегающих тканей проводились для 
определения экспрессии GST-P, GST-T, GST-M, CYP1A1, 
CYP1B1, MDR и p53. Анализ геномной ДНК опухолей вы-
полнялся для определения генотипов GSTM1, GSTT1 и p53. 
Модели были разработаны с использованием алгоритмов 
«дерево решений», Naïve Bayes и SVM на языке Python. 
Мы сравнили модели на основе показателей точности, пре-
цизионности, чувствительности и F-измерения.

Результаты. Общая выживаемость после операции 
составила 65 %. Наблюдались значительные различия в 
экспрессии белков между раковыми и здоровыми тканями 
для GST-P, GST-T, GST-M, CYP1A1, CYP1B1, MDR и p53. 
Отсутствие генотипа GST-M1 было связано с развитием 
опухоли головного мозга. Модель дерева решений показала 
наивысшую точность (84 %) среди моделей, объединяю-
щих демографические, клинические, иммуногистохимиче-
ские и генетические данные. Точность и чувствительность 
моделей различались, при этом дерево решений продемон-
стрировало хорошие результаты.

Выводы. Модели дерева решений показали свою эф-
фективность в прогнозировании выживаемости при раке 
мозга, особенно при работе с ограниченными данными, 
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Introduction 

Central Nervous System (CNS) tumors, origi-
nating in the brain or spinal cord tissues, pose a 
significant challenge as they disrupt the coordina-
tion and control of bodily functions governed by 
the CNS [1, 2]. These tumors can be primary, 
originating within the CNS, or secondary, resulting 
from metastasis of cancerous cells from other body 
parts [3]. Different types of CNS tumours can be 
classified based on the specific cell types affected, 
including astrocytoma, oligodendroglioma, ependy-
moma, medulloblastoma, meningioma, etc. [3].

Brain and other CNS tumors are among the most 
fatal cancers, causing significant morbidity and 
mortality. [4]. A single center pathology review of 
21,622 cases showed that the proportion of CNS tu-
mors was 63.8 % [5]. The global incidence of CNS 
cancer reached 330,000 cases in 2016, with an age-
standardised rate of 4.63 per 100,000 person-years 
[6]. A recent systematic review and meta-analysis 
reported a primary CNS tumor prevalence of 3.6 
per 100,000 individuals [7]. In the year 2019, a 
staggering total of 347,992 documented incidences 
of CNS malignancies were recorded on a global 
scale. Concurrently, during this temporal span, the 
lamentable toll of 246,253 lives succumbed to the 
devastating impact of CNS cancers across the world 
[8]. The global age-standardized mortality rate in 
2019 was 3.05 per 100,000 population [8]. 

The etiology of CNS cancers, while not yet 
comprehensively elucidated, manifests as a multi-
factorial phenomenon, characterized by an intricate 
interplay of genetic, environmental, and lifestyle 
factors [9, 10]. Therefore, understanding the com-
plicated interaction of influenced factors is crucial 
for both the prevention and management of brain 
cancer. Particularly survival prediction in brain can-
cer is crucial for guiding treatment decisions and 
improving patient outcomes. Several studies have 
highlighted the significance of machine learning 
techniques in predicting survival in patients with 
brain tumors. The use of machine learning tech-
niques in predicting survival in patients with brain 
tumors has shown promising results, offering the 
potential to improve treatment planning and patient 
outcomes. These methods leverage medical imaging 

data and other relevant features [11–13] to provide 
accurate and robust predictions of patient survival, 
thereby contributing to the advancement of person-
alized medicine in brain cancer treatment. Howev-
er, models based on cancerous cell genotypic and 
relevant protein expression profiles have not been 
developed yet. Thus, in the current study, a novel 
prognostic modeling for brain cancer patient sur-
vival using advanced supervised machine learning 
classification approaches based on the demographic, 
clinical, and protein expression profile of GST-P, 
GST-T, GST-M, CYP1A1, CYP1B1, MDR, and p53 
genes. Moreover, the model accounts for genotypic 
variations in GST-M, GST-T, and p53, recognizing 
their potential roles in the pathogenesis of cancer.

Subjects and Methods

Study Design And Recruitment Of Participants
This modeling inquiry encompassed a cohort 

of patients afflicted with intracranial tumors who 
underwent operative procedures at a distinguished 
neurosurgery clinic within the temporal confines of 
2017 and 2019. The archived clinical data pertain-
ing to these patients were subjected to a retrospec-
tive evaluation, thereby facilitating an examination 
of their medical records comprehensively. Subjects 
who received a diagnosis of intracranial tumors, en-
compassing gliomas, metastases, meningiomas, and 
pituitary adenomas, and whose cases were accom-
panied by the availability of tumor tissue samples, 
were duly incorporated into the designated dataset.

Certain exclusion criteria were judiciously ap-
plied to ensure the internal validity and scientific 
rigour of the study. Patients with concurrent ma-
lignancies unrelated to cerebral pathology, primary 
tumors outside of intracranial locations, insufficient 
tumor tissue samples for meaningful analysis, se-
vere co-morbidities such as end-stage renal disease 
or liver failure, Individuals who had previously re-
ceived targeted therapeutic interventions explicitly 
targeting the GST isoenzymes CYP1A1, CYP1B1, 
MDR and p53 pathways, and cases where informed 
consent could not be obtained, were systematically 
excluded from the study.

The final sample comprised a total of 149 sub-
jects with a mean age of 49.44 ± 8.09 years. The 
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subjects ranged in age from 6 to 83 years, and the 
gender distribution was 62 females to 87 males, 
reflecting a diversity of perspectives and making 
the participant pool representative of the wider 
population under study. The histological distribu-
tion was as follows: gliomas (38.3 %), metasta-
ses (27.5 %), meningiomas (22.1 %), and pituitary 
adenomas (12.1 %). This distribution reflects the 
expected prevalence of CNS tumors in a surgical 
cohort, with gliomas being the predominant malig-
nant primary tumor and brain metastases being the 
most common secondary tumor type.

Data Collection 
A comprehensive in-house checklist was used 

to systematically collect demographic and clini-
cal data from the subjects. This tool facilitated the 
collection of essential information, including age, 
sex, smoking and alcohol consumption habits, pre-
vious exposure to radiotherapy and chemotherapy, 
number of previous surgical interventions, brain 
region involved, resection margins, lesion location 
and postoperative status. The data were collected 
retrospectively to ensure a rigorous examination 
of the subject’s background. A comprehensive in-
house checklist was used to systematically collect 
demographic and clinical data from the subjects. 
This tool facilitated the collection of essential in-
formation, including age, sex, smoking and alcohol 
consumption habits, previous exposure to radiother-
apy and chemotherapy, number of previous surgi-
cal interventions, brain region involved, resection 
margins, lesion location and postoperative status. 
The data were collected retrospectively to ensure 
a rigorous examination of the subject’s background.

Subsequently, tumor tissue removed from the 
surgical sites by experienced neurosurgeons using 
standardised procedures was subjected to histopath-
ological examination. These tissue samples were 
embedded in paraffin for subsequent analysis. Im-
munohistochemistry was used to carefully evaluate 
the expression of GST-P, GST-T, GST-M, CYP1A1, 
CYP1B1, MDR and p53 proteins. Microscopic ex-
amination following immunostaining allowed the 
classification of protein expression into discrete cat-
egories, labelled 0, 1, 2 or 3, allowing a precise 
evaluation of the observed protein expression levels.

Histopathological Examination 
Histopathological analysis of cerebral neoplas-

tic tissues provides a valuable means of gaining a 
comprehensive insight into the cellular and archi-
tectural characteristics of the tumor, thereby aiding 
in accurate diagnosis, categorization and progno-
sis. This meticulous examination involves the mi-
croscopic examination of tissue samples obtained 
from cerebral tumors, allowing the identification 
of distinctive morphological features and molecular 
alterations that contribute to informed therapeutic 
decisions and prognostic predictions.

The process commenced with the procurement 
of neoplastic tissue during surgical resection pro-
cedures. These tissue samples were subsequently 
immersed in a 10 % buffered formalin solution, 
which served the purpose of preserving their struc-
tural integrity and preventing decay. Subsequent to 
fixation, the tissue underwent a series of procedural 
steps aimed at preparing thin sections suitable for 
microscopic evaluation. This entailed embedding 
the tissue in paraffin wax, which facilitated the cre-
ation of 4 µm thin sections. Immunohistochemical 
analysis was employed to uncover the expressions 
of GST-P, GST-T, GST-M, CYP1A1, CYP1B1, 
MDR, and p53 proteins in the obtained tissues fol-
lowing their preparation.

Immunohistochemical (IHC) Staining
For immunohistochemistry, the endogenous per-

oxidase activity was neutralized by immersing the 
sections in a solution of 1 % hydrogen peroxide 
(v/v) in methanol for a duration of 10 minutes at 
room temperature. Subsequently, the sections were 
rinsed in distilled water for 5 minutes, and the GST-
P, GST-T, GST-M, CYP1A1, CYP1B1, MDR, and 
p53 protein retrieval was carried out in a household 
pressure cooker for 3 minutes, utilizing a 0.01 M 
citrate buffer (pH 6.0). After a further rinse with 
distilled water, the sections were transferred to a so-
lution of 0.05 M Tris-HCl (pH 7.6) containing 0.15 
M sodium chloride (TBS). To prevent non-specific 
background staining, sections were incubated with 
Super Block (streptavidin/HRP complex [SHP125]; 
ScyTek Laboratories, USA) for 10 minutes at room 
temperature. Subsequently, the sections were treat-
ed with primary antibodies, diluted at a ratio of 
1:1,000 for anti- GSTP, anti-GST-T, anti-GST-M, 
anti-CYP1A1, anti-CYP1B1, anti-MDR and 1:50 
for anti-p53, and left to incubate overnight at 4°C 
(Anti-GST-M obtained from Boster Biological, 
Pleasanton, CA, USA; anti-p53 acquired from Santa 
Cruz Biotechnology Inc., USA). After a 15-minute 
wash in TBS, the sections were incubated with a 
biotinylated link antibody, followed by SHP125, at 
room temperature. The visualization of peroxidase 
activity in the tissues was achieved using diamino-
benzidine. The nuclei were lightly counterstained 
with hematoxylin, and subsequently, the sections 
were dehydrated and mounted. The evaluation of 
tissue nuclei from both the central region of the 
tumor and the invasive front was conducted sepa-
rately for each sample, focusing on the presence of 
nuclear and cytoplasmic staining in tumor epithelial 
cells. The staining intensity was graded on a scale 
of 0 (no staining), 1 (poor staining), 2 (moderate 
staining), or 3 (strong staining).

Genotyping GSTM1 and GSTT1 and p53
Tumor tissues were subjected to extract ge-

nomic DNA for further genotypic analysis. Finally 
genomic DNA was accessible from 143 subjects 
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to examine GSTM1 and GSTT1 via melting-curve 
analysis-based qPCR method to determine the de-
letion status of the GST-M1 and GST-T1 gene re-
gions. In addition, genomic DNA from 120 brain 
tumor tissues and 47 normal tissues was used for 
sequence analysis to distinguish the SNP genotype 
of the p53 gene region exon4 codon72 (Figure 1), 
where the Arg/Pro change associated with the gua-
nine/cytosine base conversion occurs, affecting the 
phenotypic expression of the tumor suppressor p53 
gene due to a point mutation in this gene region 
[14,15]. 

Melting Curve Analysis by qPCR
In our study, qPCR method based on melting-

curve analysis was applied to examine the deletion 
status of GST-M and GST-T gene regions. During 
this application, the Roche Lightcycler 480 qPCR 
system was used. Bio-Rad SSO Advanced Univer-
sal SYBR Green Supermix was used. GST-M and 
GST-T primer sequences used in the study; for GST-
T1; 5-CAAGTCCCAGAGCACCTCACCTC-3’ 
(NM_000853) Forward, 5-GTGTGCATCATTCT-
CATTGTGGCTT-3’ (NM_000853) Reverse, for 
GST-M1; 5’-TGCATTCGTTCATGTGACAG-
TATTCT-3’ (NM000561) Forward, 5’-GAGAG-
GAGACCGGGCACTCA-3’ (NM000561) Reverse 
[16]. In addition, this primer sequence was syn-
thesized in the laboratory in specialized columns 
with CPG (Controlled Pore Glass) using the oligo-
synthesis method and its purification was obtained 
from the C18 column and the sample collector 
with the reverse phase HPLC (Agilent) system. 
The controls were confirmed by the electrophore-
sis gel method in terms of both the graphs in the 
chromatographic system and the base sizes[17]. 
Mixing ratios prepared at the pre-PCR stage prior 
to the qPCR system; SYBR Green PCR Master 

Mix (Power) 5uL; forward primer 0.4uL; reverse 
primer 0.4uL; cDNA 1uL (100ng/uL); water (DN-
Ase/RNAse free) 3.2uL; total volume was 10µL. 
In addition, the melting curve analysis program 
used in the qPCR system; 3 min at 98oC. 1 loop; 
each cycle of the denaturation process was 10 sec-
onds at 95oC and 15 seconds at 60oC, 40 cycles 
of amplification and finally 0.3oC/second (ramp 
rate) from 65oC to 95oC.

SNPs Analysis by Sanger Sequence
It is known that the Arg/Pro change that occurs 

with the guanine/cytosine base conversion in the 
exon4 codon72 gene region, which is known to 
affect the phenotypic expression of the p53 tumor 
suppressor gene, is caused by the point mutation 
that occurs in this gene region. In order to clarify 
the situation of this point mutation in the patient 
group of our study, the position of the gene region 
that we amplified by polymerase chain reaction was 
analyzed for point mutations by sequence analysis 
method (Applied Biosystems-3130XL, P53 prim-
ers= NM000546.6) [14,15,18] . 

Feature Selection and Classification Algorithms
Five categories of input features were select-

ed for the development of a high-metric predic-
tion model. The categories of input characteristics 
are summarised in Table 1. Demographic profile 
includes age, gender, smoking and alcohol con-
sumption habits. Clinical profile includes previous 
exposure to radiotherapy and chemotherapy, num-
ber of previous surgical procedures, affected brain 
region, resection margins and lesion location. The 
protein expression levels of GST-P, GST-T, GST-M, 
CYP1A1, CYP1B1, MDR and p53 genes in tumor 
and adjacent healthy tissue were included in the 
protein expression profile. Gene dosage and dele-
tion junction information related to GSTM1 and 

Fig. 1. The performance metrics of models adjusted to test survival prediction for brain cancer patients
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GSTT1 genes and Arg/Pro change that occurs with 
the guanine/cytosine base conversion located in the 
p53 exon4 codon72 gene region were defined as 
genotypic variation input. 

Model Construction
Three models were constructed to predict the 

survival of brain tumor patients after surgery. Each 
category of input was then used as input to classi-
fiers. A total of 15 models were constructed, each 
trained with randomly selected input parameters 
from 75 % of the patients. The models were then 
tested with the remaining 25 % of the patients’ 
parameters. All algorithms were developed using 
Python version 3.8.0. The performance of the mod-
els was compared for model accuracy, precision, 
sensitivity and F-measure metrics.

Results

The descriptive data show that the mean age 
was 49.44 ± 8.09 years. Of the total number of pa-
tients, 85 were male (59.4 %) and 58 were female 
(40.6 %). Among the patients, 30 % had a history 
of smoking, while 70 % had never smoked. Only 
9.8 % reported alcohol consumption, with the ma-
jority (90.2 %) abstaining. Regarding treatment, 
38.4 % received radiotherapy and 22.3 % received 
chemotherapy. Lesion analysis showed the highest 
frequency in the frontal region (28 %), followed 
by the temporal region (11.2 %), cerebellar re-
gion (10.5 %) and parietal region (2.8 %). The 
remaining cases (47.5 %) showed various tumor 
localizations. The overall postoperative survival 
rate was 65 %. Table 2 provides a comprehen-
sive overview of patient demographics, treatment 
history, and clinical profile. Table 3 presents the 

Table 1. The input features categories for constructing models 

Inputs Demographic profile Clinic profile Protein expression Genotypic variation

Input 1 √ √ √ √

Input 2 √ √ √

Input 3 √ √ √

Input 4 √ √ √

Input 5 √ √ √

Table 2. Distribution of demographic and clinical 
characteristics of participants

Characteristics Total n (%)
Demographic characteristics

Gender
Female 58 (40.6 %)
Male 85 (59.4 %)

Age (year)
< 60 93 (65 %)
≥ 60 50 35 %)

Smoking
Yes 43 (30 %)
No 100 (70 %)

Alcohol
Yes 14 (9.8 %)
No 129 (90.2 %)

Clinical characteristics

Radiotherapy
Yes 55 (38.5 %)
No 88 (61.5 %)

Chemotherapy
Yes 32 (22.3 %)
No 111 (77.6 %)

Lesion localization

Frontal 40 (28 %)

Parietal 4 (2.8 %)

Cerebellar 15 (10.5 %)

Temporal 16 (11.2 %)

Other 68 (47.5 %)

Post-operation status
Alive 93 (65 %)
Exitus 50 (35 %)

Table 3. Distribution of protein expression levels between patients and healthy tissue

Protein marker 
Patinets Healthy 

P value
0 1 2 3 0 1 2 3

GST-Pi 113 31 5 0 138 10 1 0 0.00038

CYP1A1 139 10 0 0 141 8 0 0 0.61006

CYP1B1 80 62 7 0 133 14 2 0 < 0.00001

GST-M 96 41 11 0 129 16 3 0 < 0.00001

MDR 62 65 22 0 139 9 1 0 < 0.00001

GST-TETA 61 42 25 21 137 8 3 1 < 0.00001

P53 117 32 0 0 145 1 0 0 < 0.00001
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frequency distribution of immunohistochemical 
staining categories for the protein markers exam-
ined in the study in both brain tumor and adjacent 
normal tissue.

The protein expression of GST-P, GST-T, GST-
M, CYP1A1, CYP1B1, MDR and p53 genes was 
examined and showed significant differences in 
expression levels between cancerous and normal 
tissues (p ≤0.05). GSTP expression in cancer tis-
sue correlated with CYP1A1, CYP1B1, MDR and 
GST-T (P ˂0.05), whereas no correlation was ob-
served in normal tissue. CYP1A1 protein expres-
sion correlated with CYP1B1 and MDR in healthy 
tissue (p˂0.05), but the correlation disappeared in 
tumor tissue. Similarly, CYP1B1 expression cor-
related with MDR, GSTT and p53 in healthy tis-
sue (p˂0.05), but the correlation was lost in can-
cer cells. GSTM expression correlated with p53 in 
normal tissue (p=0.03), but the correlation was lost 
in cancer cells. MDR and GSTT expression levels 
changed with p53 expression (p=0.02) in cancer-
ous tissue. In our immunohistochemical analysis, 
we observed significant differences in the expres-
sion levels of GST-P, GST-T, GST-M, CYP1A1, 
CYP1B1, MDR and p53 between different tumor 
types.

Specifically: Gliomas showed high GST-P and 
p53 expression, consistent with their aggressive 
nature and the role of oxidative stress and apoptotic 
dysregulation in gliomagenesis.

Metastatic tumors showed significantly high CY-
P1A1 and MDR expression, suggesting enhanced 
detoxification and drug resistance mechanisms.

Meningiomas and pituitary adenomas, which 
are benign tumors, generally had lower expression 
levels of apoptotic and detoxification markers, but 
showed variable GST-M and GST-T expression, 
likely indicating tumor subtype-specific metabolic 

activity. These findings suggest that histological tu-
mor variants have distinct molecular signatures and 
highlight the value of incorporating IHC markers 
into predictive modelling of survival outcomes.

Gene dosage and deletion junction information 
associated with patient GSTM1 and GSTT1 ge-
notyping were described (Table 4). The GSTM1 
genotype distribution was not in Hardy-Weinberg 
equilibrium in tumor tissue (χ2=39.756, p<0.001), 
indicating that the GSTM1 null genotype may 
be associated with brain tumor development. The 
genotype frequencies were 30.8 %, 23.1 % and 
44.3 % for GSTM1 1/1, GSTM1 1/0 and GSTM1 
0/0, respectively. However, the GSTT1 genotype 
distribution was in Hardy-Weinberg equilibrium 
(χ2=0.335, p=0.846) and the genotype frequencies 
were 64.3 %, 30.8 % and 4.9 % for GSTT1 1/1, 
GSTT1 1/0 and GSTT1 0/0, respectively. On the 
other hand, the most frequent genotype of p53 co-
don 72 polymorphism was Arg / Pro (heterozygous) 
followed by Arg /Arg (wild type) in both tumor and 
healthy tissues (Table 4). Furthermore, the genotype 
distribution of GSTM1, GSTT1 and P53 exon 4 co-
don 72 did not show significant differences between 
patients with respect to demographic and clinical 
characteristics.

The performance metrics of the models, includ-
ing accuracy, precision and sensitivity, were evalu-
ated (Fig. 1). The highest accuracy (84 %) was 
achieved when demographic, clinical, immunohis-
tochemical and genetic information were used to 
train the decision tree model, followed by Naïve 
Bayes (80 %) when genotypic variables were elimi-
nated. However, the accuracy of the SVM model 
was consistently ≤ 76 % in all cases. Despite these 
results, the overall deviation in accuracy was only 
3.5 %. This deviation was 9.9 % and 11.3 % for 
precision and sensitivity, respectively.

Table 4. GSTM1, GSTT1 and p53 genotyping in cancer tissue

Genotyping Observed Expected p-value

GSTM1 present (1/1) 44 27

P < 0.001
χ2 = 39.756

GSTM1 present (1/0) 33 70

GSTM1 null (0/0) 66 46

Total 143

GSTT1 present (1/1) 92 91

p = 0.846
χ2 = 0.335

GSTT1 present (1/0) 44 46

GSTT1 null (0/0) 7 6

Total 143

P53 Wild type (Arg/Arg) 31 18

p = 0.281
χ2 = 2.536

P53 Heterozygous (Arg/Pro) 70 23

P53 Mutant type (Pro/Pro) 19 6

Total 120
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Although there was high precision for Deci-
sion Tree (82 %), Naïve Bayes (87 %) and SVM 
(100 %) when Input 1 was used to train the algo-
rithms, sensitivity was significantly low for Naïve 
Bayes and SVM. In general, there was significant 
variation in the performance of precision and sensi-
tivity. However, the F-score was calculated to miti-
gate the heterogeneity of the precision and sensi-
tivity parameters. Finally, the decision tree, when 
trained with input 1, showed an acceptable level of 
accuracy, precision and sensitivity.

Discussion

The study dataset includes demographic, clini-
cal, immunohistochemical and genotypic variables. 
This information is important for developing a ma-
chine learning approach to survival prediction as it 
provides valuable context and characteristics of the 
patient population. This information can be used to 
identify patterns and trends in the data, which can 
then be used to create more accurate and effective 
machine learning models. 

The most commonly used machine learning al-
gorithms for creating predictive models for brain 
tumor patients include methods such as support 
vector machines (SVM), random forest, gradi-
ent boosting, decision trees and neural networks. 
These algorithms have been widely used to develop 
predictive models for the survival of brain cancer 
patients, particularly in cases of glioblastoma. Re-
searchers have used these algorithms to analyse 
clinical, imaging and genomic data to predict how 
long brain tumor patients may survive [19,20]. In 
addition, machine learning and deep learning tech-
niques have been used to predict overall survival in 
brain tumor patients using MRI images [13]. These 
algorithms have been shown to be effective in 
predicting various types of cancer, including brain 
cancer, and have the potential to improve diagno-
sis, prognosis, and quality of life for brain tumor 
patients [21]. In particular, the benefits of using 
machine learning approaches highlight the potential 
to improve prognostic modelling for brain cancer 
patients, ultimately contributing to more accurate 
predictions and personalised treatment approaches 
[21].

In the current endeavor, the decision tree clas-
sifier stands out as being particularly effective 
when all features are considered as input. It has 
demonstrated remarkable performance, achieving 
an F-measure of 82 % and an accuracy rate of 
84 %. Accuracy, a widely used metric, reflects the 
proportion of correct predictions relative to total 
predictions and provides a concise summary of a 
model’s effectiveness. However, relying solely on 
accuracy may prove inadequate for assessing the 
overall robustness of a model. To ascertain the 

model’s resilience, it is imperative to extend the 
evaluation beyond accuracy alone. The true-positive 
rate emerges as a more dependable predictor in this 
context. Low precision and sensitivity can lead to 
an excess of false positives and false negatives, 
respectively. Precision and sensitivity, which mea-
sure the accuracy and completeness of a model, 
play a central role in decision making related to 
survival prediction and diagnosis. Models charac-
terized by high precision and low sensitivity, or 
those with both low precision and low sensitivity, 
lack the necessary parameters to make informed 
decisions. Consequently, the F score, which rep-
resents the harmonic mean of precision and sen-
sitivity, provides a comprehensive approach to ad-
dressing both concerns. This single score combines 
sensitivity and precision with a factor that controls 
their relative importance. This ensures a more nu-
anced and comprehensive assessment of a model’s 
performance in predicting survival outcomes [22].

Decision trees are easy to understand and inter-
pret, making them valuable for identifying the most 
important features for survival prediction in brain 
tumor patients. They can also handle non-linear re-
lationships between features and outcomes, which 
can be beneficial when dealing with complex data-
sets related to brain cancer. Additionally, decision 
trees have been shown to achieve high accuracy 
and efficiency in predicting survival in patients with 
glioblastoma multiforme, a type of brain tumor 
[23,24]. On the other hand, SVM classification has 
been reported to achieve high accuracy in predict-
ing cancer outcomes, including brain cancer, mak-
ing it a valuable tool for survival prediction. It is 
effective in handling complex proteomic, genomic, 
and imaging data, which is crucial for accurate sur-
vival prediction in brain cancer patients. SVM has 
also been found to be the optimum classification 
method, with high precision, in predicting cancer 
diseases using machine learning approaches [25]. In 
some cases, simpler machine learning methods like 
Naive Bayes have been reported to substantially 
outperform more complex algorithms in cancer pre-
diction and prognosis [26,27]. 

The primary constraint of this study was the 
sample size, consisting of 149 patients. Diseases 
such as brain cancer pose a perpetual challenge 
due to the difficulty in accessing cell-based data. 
Consequently, it is imperative for models to dem-
onstrate effectiveness and efficiency in handling 
limited data. The decision tree, naive bayes and 
SVM algorithms are particularly useful for small 
sample sizes[28–30]. 

Conclusion

Decision trees offer high accuracy and accept-
able precision and sensitivity in limited datasets 
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compared to SVM and naive Bayes for predicting 
survival in brain cancer when using demograph-
ic, clinical, immunohistochemical and genotypic 
variables. However, each algorithm has its own 
strengths and the choice of algorithm may depend 
on the specific characteristics of the dataset and the 
goals of the prognostic modelling task. 
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