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Внедрение технологии секвенирования нового поколе-
ния позволило охарактеризовать молекулярный портрет рака 
предстательной железы (РПЖ) и обнаружить высокую часто-
ту нарушений в генах репарации ДНК, в том числе участни-
ках гомологичной рекомбинации (Homologous Recombination 
Repair, HRR), при опухолях этой локализации. Анализ статуса 
генов HRR приобрел особую актуальность после внедрения 
в практику терапии метастатического кастрационно-рези-
стентного РПЖ ингибиторов поли(АДФ-рибоза)-полимеразы 
(PARP-ингибиторов). Эти препараты одобрены к примене-
нию при наличии мутаций в генах BRCA1/2 и ряде дру-
гих компонентов системы репарации ДНК. В то время как 
предиктивное значение повреждений BRCA1 и BRCA2 не 
вызывает сомнений, клиническая польза PARP-ингибиторов 
в присутствии других нарушений HRR является более спор-
ной. Помимо персонализации терапии, генетический ана-
лиз HRR позволяет выявить наследственные формы РПЖ. 
Настоящий обзор посвящен характеристике и клинической 
значимости мутаций в различных генах HRR.
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The advent of next-generation sequencing has enabled 
comprehensive molecular profiling of prostate cancer (PC), 
revealing a high prevalence of DNA repair gene deficien-
cies—particularly in homologous recombination repair (HRR) 
pathway components in tumors of this localization. HRR gene 
analysis has gained critical importance following the clinical 
introduction of poly(ADP-ribose) polymerase inhibitors (PARP 
inhibitors) for metastatic castration-resistant prostate cancer. 
These agents are approved for tumors with BRCA1/2 muta-
tions and other HRR gene alterations. While the predictive 
significance of BRCA1/2 defects is well-established, the clinical 
benefit of PARP inhibition in cases with other HRR abnor-
malities remains controversial. Beyond therapy personalization, 
HRR genetic testing facilitates identification of hereditary PC 
syndromes. This review characterizes the clinical implications 
of mutations across the HRR pathway.
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Введение

Рак предстательной железы (РПЖ) занима-
ет третье место по частоте среди всех злока-

чественных опухолей человека, и второе место 
после рака легких  — у мужчин [1]. В России 
ежегодно регистрируется более 40  000 новых 
случаев заболевания, при этом РПЖ становится 
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причиной смерти примерно 13  000 человек [2]. 
Клиническая картина РПЖ может варьировать 
от индолентных локализованных форм до агрес-
сивного быстро прогрессирующего метастатиче-
ского заболевания. Подавляющее большинство 
РПЖ диагностируется на ранних стадиях, одна-
ко у 20−30  % пациентов в дальнейшем наблю-
дается прогрессирование процесса. Ключевой 
элемент в патогенезе РПЖ  — зависимость опу-
холи от стимуляции андрогенами и активации 
AR-зависимой онкогенной транскрипционной 
программы, поэтому ведущее место в лечении 
диссеминированного РПЖ принадлежит анти-
андрогенной терапии. Несмотря на её высокую 
эффективность, практически неизбежно со вре-
менем опухоли утрачивают чувствительность 
к андрогенной депривации. Для лечения мета-
статического кастрационно-резистентного РПЖ 
(мкрРПЖ), помимо гормональной терапии но-
вого поколения и химиопрепаратов из группы 
таксанов, в настоящее время могут быть ис-
пользованы также ингибиторы поли(АДФ-рибо-
за)-полимеразы (PARP-ингибиторы) и ингибито-
ры контрольных точек иммунного ответа. Для 
применения этих новых лечебных опций необхо-
димо предварительное выполнение молекуляр-
но-генетического исследования мутаций в генах 
системы репарации гомологичной рекомбинации 
ДНК (Homologous Recombination Repair, HRR) 
и феномена микросателлитной нестабильности 
(MSI). Наследственные и соматические мутации 
в генах HRR встречаются с частотой около 5  % 
при локализованных и до 20−25 % при метаста-
тических РПЖ, ассоциированы с более агрес-
сивным течением заболевания и служат показа-
нием для использования ингибиторов PARP [3]. 
Микросателлитная нестабильность и/или потеря 
экспрессии белков системы репарации неспарен-
ных оснований ДНК (dMMR) обнаруживаются 
в 2−3  % РПЖ и сопряжены с высокой вероят-
ностью ответа на иммунотерапию [4]. Помимо 
расширения спектра терапевтических опций, ге-
нетическое тестирование при РПЖ может под-
твердить наследственную природу заболевания. 
До 10−15  % РПЖ обусловлены носительством 
мутаций в генах гомологичной рекомбинации 
ДНК, системы MMR или в гене HOXB13 [5]. 

В настоящем обзоре представлены общая 
характеристика нарушений гомологичной ре-
комбинации при РПЖ и анализ значимости ди-
агностики мутаций в отдельных генах HRR. 

Мутации в генах гомологичной 
рекомбинации ДНК: общие сведения

Гомологичная рекомбинация ДНК  — един-
ственный из механизмов репарации, позволя-
ющий безошибочно восстанавливать структуру 

ДНК после двуцепочечных разрывов. При инак-
тивации HRR коррекция двунитевых разрывов 
осуществляется альтернативными, менее точ-
ными способами (негомологичное соединение 
концов  — non-homologous end joining (NHEJ), 
соединение концов на основе микрогомологии — 
microhomology-mediated end joining (MMEJ), от-
жиг одиночной цепи  — single strand annealing 
(SSA)), сопряжёнными с генерацией большого 
числа определённых типов хромосомных абер-
раций и микромутаций. Лучше всего изученные 
причины дефицита гомологичной рекомбинации 
ДНК (homologous recombination repair deficiency, 
HRD) в разных типах опухолей, включая РПЖ — 
мутации в генах BRCA1 и BRCA2. Для возникно-
вения HRD необходима полная потеря функции 
BRCA1 или BRCA2, которая обычно является 
результатом «выключения» обоих аллелей гена 
за счет сочетания наследственной мутации и де-
леции нормальной копии гена в опухоли (потеря 
гетерозиготности), сочетания наследственной и 
соматической мутаций, двух соматических по-
вреждений, эпигенетической инактивации (ги-
перметилирования). Высокопроизводительное 
секвенирование BRCA1/2-опосредованных опухо-
лей позволило охарактеризовать геномные при-
знаки HRD. К ним относятся общее повышение 
хромосомной нестабильности, присутствие зна-
чительного числа микроделеций ≥  2 п.о. с го-
мологичными фланкирующими областями, про-
филя однонуклеотидных замен 3 типа (COSMIC 
mutational signature 3), особого паттерна потерь 
гетерозиготности, преобладание делеций над 
инсерциями, повышенная частота делеций раз-
мером более 10  п.о., и др. [6−8]. Дефицит го-
мологичной рекомбинации, вызванный мутаци-
ями BRCA1/2 или иными причинами, связан с 
повышенной уязвимостью опухолевых клеток к 
ДНК-повреждающим видам терапии (препаратам 
платины, антрациклинам, митомицину С), а так-
же к PARP-ингибиторам. Эффект последних ре-
ализуется по механизму синтетической летально-
сти. Ферменты PARP задействованы в репарации 
одноцепочечных разрывов ДНК; при ингибирова-
нии их функции одноцепочечные разрывы могут 
трансформироваться в двуцепочечные, в норме 
репарируемые cистемой HRR. Сочетание HRD и 
инактивации PARP приводит к гибели клетки [9]. 

Cерия исследований, установивших высокую 
частоту мутаций в генах репарации при РПЖ, 
стала одним из стимулов для клинических ис-
пытаний PARP-ингибиторов при этом типе опу-
холей. Так, полноэкзомный анализ 333 РПЖ в 
рамках проекта The Cancer Genome Atlas по-
казал, что 19  % опухолей содержат мутации в 
генах репарации ДНК [10]. Частота нарушений 
в генах HRR оказалась наиболее высокой в ме-
тастатических кастрационно-резистентных РПЖ 
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(23−25  %) [11, 12]. Эти и последующие работы 
показали, что в отличие от рака молочной же-
лезы и яичника, для опухолей простаты харак-
терно большее разнообразие мутаций в генах, 
имеющих отношение к HRR, а также значимый 
вклад соматических нарушений. Наиболее ча-
сто обнаруживаются повреждения BRCA2, ATM, 
CHEK2, CDK12, реже встречаются мутации 
BARD1, ATR, MRE11, NBN, cемейства RAD51, 
генов анемии Фанкони (PALB2, FANCС, FANCI, 
FANCL, FANCM), и др. (рисунок). Вместе с тем, 
по данным полногеномного секвенирования, ча-
стота феномена HRD при метастатическом РПЖ 
составляет 13  % [8]. Это наблюдение позволяет 
предположить, что только около половины обна-
руживаемых при мкрРПЖ повреждений в генах 
HRR действительно сопровождаются дефицитом 
гомологичной рекомбинации ДНК. 

На основании успешных клинических испы-
таний в 2020  г. были одобрены к применению 
при мкрРПЖ два PARP-ингибитора, олапариб и 
рукапариб [13, 14]. Олапариб получил одобрение 
Агентства по контролю качества пищевых про-
дуктов и лекарственных средств США (FDA) в 
качестве монотерапии при мкрРПЖ с мутациями 
в любом из 14 генов HRR (ATM, BRCA1, BRCA2, 
BARD1, BRIP1, CDK12, CHEK2, FANCA, PALB2, 
RAD51, RAD51B, RAD51C, RAD51D, RAD54L), и 
Европейского агентства по лекарственным сред-
ствам (EMA)  — для пациентов с мутациями 
BRCA1/2. Рукапариб рекомендован к использо-
ванию у пациентов, имеющих наследственные 
или соматические мутации в генах BRCA1/2. 
Впоследствии были одобрены к применению 
комбинации олапариба и нирапариба с абирате-
роном для BRCA1/2-ассоциированного мкрРПЖ, 
и талазопариба и энзалутамида  — для мкрРПЖ 
с мутациями в любом из 12 генов (ATM, ATR, 
BRCA1, BRCA2, CDK12, CHEK2, FANCA, MLH1, 
MRE11A, NBN, PALB2, RAD51C) [15].

Помимо PARP-ингибиторов, опухолевые 
клетки с дефицитом гомологичной рекомби-
нации характеризуются чувствительностью к 
производным платины. Препараты платины не 
входят в современные стандарты лечения рака 
предстательной железы. Тем не менее уже су-
ществуют примеры успешного применения кар-
боплатина и цисплатина при метастатическом 
РПЖ, в особенности у пациентов с мутациями 
HRR [16−18]. Также описаны единичные слу-
чаи исключительно хорошего ответа на терапию 
производными платины при наследственных му-
тациях BRCA2, ATM и при наличии геномных 
признаков HRD [19, 20].

Несмотря на возрастающую актуальность 
молекулярно-генетического тестирования при 
РПЖ, отдельные его аспекты пока что остаются 
не стандартизированными [21]. Можно отметить, 
что рекомендации разных профессиональных 
сообществ едины в том, что всем больным с 
метастатическими опухолями необходимо иссле-
довать статус соматических и наследственных 
мутаций HRR. Анализ наследственных мутаций 
HRR необходим в наибольшей степени пациен-
там с отягощённым личным или семейным онко-
логическим анамнезом (опухоли предстательной 
железы в возрасте до 60 лет, рак молочной же-
лезы, поджелудочной железы, яичников у кров-
ных родственников), а также больным с локали-
зованным РПЖ высокого риска вне зависимости 
от анамнеза. В соответствии с рекомендациями 
NCCN, список генов HRR, тестируемых на на-
следственные мутации, включает BRCA1, BRCA2, 
ATM, PALB2, CHEK2, а при метастатических опу-
холях рекомендовано анализировать статус генов 
BRCA1, BRCA2, ATM, PALB2, CHEK2, FANCA, 
RAD51D, CDK12 [22]. Наиболее широко приме-
няемым подходом для молекулярно-генетической 
диагностики при РПЖ является таргетное высо-
копроизводительное секвенирование.

Рис. Диагностика мутаций в генах системы HRR при раке предстательной железы
Fig. Genetic testing for mutations in HRR genes in prostate cancer
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Гены BRCA1 и BRCA2

Гены BRCA1 и BRCA2, задействованные 
в гомологичной рекомбинации ДНК, широко 
известны в контексте предрасположенности 
к раку молочной железы и яичника. У муж-
чин-носителей наследственных патогенных ва-
риантов в этих генах существенно повышен 
риск развития опухолей простаты. Герминаль-
ные мутации BRCA2  — самая частая причина 
наследственного РПЖ, они обнаруживаются 
примерно в 2 % неселектированных случаев и 
в 5  % РПЖ с выраженной семейной историей 
карцином предстательной железы, и связаны с 
более чем двукратным повышением риска это-
го заболевания [23, 24]. Патогенные варианты 
BRCA1 при РПЖ встречаются реже (≈  1  %) 
и ассоциированы с двухкратным увеличением 
риска [24] (табл.). Наследственные мутации 

BRCA2 обуславливают развитие более агрес-
сивных форм опухолей и худшие показате-
ли выживаемости пациентов; их присутствие 
связано с повышенной геномной нестабиль-
ностью, более высокими значениями индекса 
Глисона, большей распространённостью про-
цесса на момент диагноза [26, 41, 42]. Лока-
лизованные BRCA2-ассоциированные РПЖ по 
биологическим свойствам напоминают устой-
чивые к лечению метастатические неоплазмы 
[42]. Здоровым носителям наследственных 
повреждений BRCA1/2 рекомендовано раннее 
начало ежегодного скрининга при помощи те-
ста на уровень ПСА в крови  — с 40 лет [22].

Спектр дефектов BRCA2 при опухолях пред-
стательной железы включает не только наслед-
ственные, но и соматические мутации, их часто-
та наиболее высока в мкрРПЖ (10−13 %) [11, 25, 
27]. Один из самых частых типов соматических 

Таблица. Характеристика мутаций в основных задействованных в патогенезе РПЖ генах HRR

Ген Частота мутаций в мкрРПЖ Риск РПЖ у носителей 
наследственных мутаций

Предиктивная 
значимость в отношении 

PARP-ингибиторов
Ссылки

BRCA2 соматические: 10−13  % 
наследственные: 3−5  % неселектированный РПЖ: OR* 2,64 высокая [11, 12, 15, 24−27]

BRCA1 соматические: ≈  1  % 
наследственные: ≈  1  % неселектированный РПЖ: OR 1,35 высокая [11, 12, 15, 24−27]

ATM соматические: 6−7  % 
наследственные: 1,5−2  % неселектированный РПЖ: OR 1,7−4,4 нет [11, 12, 25−32]

CHEK2
соматические: <  1  % 
наследственные «транкирую-
щие»: 2−3  %

семейный РПЖ: OR 3,5; неселекти-
рованный РПЖ: OR 1,8−2,7 нет [12, 25, 26, 28, 

30, 31, 33, 34]

PALB2 соматические: <  1  % 
наследственные: <  1  %

высокозлокачественный РПЖ: OR 
8,05;
неселектированный РПЖ: ns

высокая [12, 13, 25, 30, 
35−37]

NBN
соматические: <  1  % 
наследственные (c.657del5): 
≈  1  % (2,6  % при семейном 
РПЖ)

семейный РПЖ: OR 4,6; неселекти-
рованный РПЖ: OR 4,3 нет (?) [30, 32−34, 38]

CDK12 соматические: 3−7  % - нет (?) [13, 30, 39, 40]

*OR: odds ratio, отношение шансов

Table 1. Mutations in HRR genes in prostate cancer (PC)

Gene Mutation Frequency in mCRPC* (%) Prostate Cancer Risk in Mutation 
Carriers (OR†)

Predictive Significance 
for PARP Inhibitors References

BRCA2 Somatic: 10−13
Germline: 3−5 Consecutive PC: 2.64 High [11, 12, 15, 24−27]

BRCA1 Somatic: ~1
Germline: ~1 Consecutive PC: 1.35 High [11, 12, 15, 24−27]

ATM Somatic: 6−7
Germline: 1.5−2 Consecutive PC: 1.7−4.4 No [11, 12, 25−32]

CHEK2 Somatic: <  1
Germline (truncating): 2−3

Familial PC: 3.5
Consecutive PC: 1.8−2.7 No [12, 25, 26, 28, 30, 

31, 33, 34]

PALB2 Somatic: <  1
Germline: <  1

High-grade PC: 8.05
Consecutive PC: NS‡ High [12, 13, 25, 30, 

35−37]

NBN
Somatic: <  1
Germline (c.657del5): ~1 (2.6 in 
hereditary PC)

Familial PC: 4.6
Consecutive PC: 4.3 No (?) [30, 32−34, 38]

CDK12 Somatic: 3−7 - No (?) [13, 30, 39, 40]

*mCRPC: metastatic castration-resistant prostate cancer
†OR: odds ratio
‡NS: non-significant
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повреждений BRCA2  — биаллельные делеции. 
При метастатических кастрационно-резистент-
ных РПЖ они могут составлять до 25  % всех 
нарушений BRCA2 [8, 43−45]. Гомозиготные де-
леции BRCA2 представляют собой более слож-
ный объект для молекулярной диагностики, чем 
точечные мутации, и могут не обнаруживаться 
при стандартном таргетном секвенировании; для 
их детекции необходимы специальные методы 
анализа и/или недоступное в обычной практике 
полногеномное секвенирование.

Преимущество монотерапии PARP-ингибито-
рами в сравнении со стандартным лечением при 
BRCA1/2-ассоциированных мкрРПЖ было пока-
зано в серии клинических испытаний (TOPARP, 
PROfound, TRITON, TALAPRO, GALAHAD) 
[15]. Объективный ответ на лечение при на-
личии мутаций BRCA1/2 достигал 41−50  %, а 
более чем 50  % снижение уровня ПСА наблю-
далось у ≈  60  % пациентов [13, 30, 32]. Важно 
отметить, что РПЖ с повреждениями BRCA1 
и BRCA2 отличаются по чувствительности к 
PARP-ингибиторам: эффект лечения выше в слу-
чае мутаций BRCA2 [46, 47]. Вероятными объ-
яснениями этого факта могут быть, во-первых, 
меньшая частота биаллельных мутаций в гене 
BRCA1, по сравнению с BRCA2, и, во-вторых, 
частое сочетание повреждений BRCA1 с сома-
тическими мутациями TP53, которые считаются 
маркерами наиболее агрессивных опухолей [46]. 
В этой связи интересны также результаты иссле-
дования Triner и соавт., посвященного анализу 
лечения 445 пациентов PARP-ингибиторами: ав-
торы установили, что среди всех типов мутаций 
BRCA1/2 наиболее продолжительным ответом на 
терапию характеризуются РПЖ с гомозиготны-
ми делециями BRCA2 и BRCA1 [48]. 

Гены ATM и CHEK2

Следующие по частоте мутаций при РПЖ 
после BRCA2 гены репарации ДНК  — это ATM 
и CHEK2. Оба гена задействованы в осущест-
влении клеточного ответа на повреждение ДНК. 
ATM кодирует серин-треониновую протеинки-
назу, которая активируется после распознава-
ния двуцепочечных разрывов ДНК комплексом 
MRN, а CHEK2 представляет собой одну из ми-
шеней ATM и инициирует репарацию ДНК или 
остановку клеточного цикла/апоптоз. Гомози-
готные наследственные мутации ATM являются 
причиной атаксии-телеангиэктазии, заболевания, 
сопровождающегося повышенной предрасполо-
женностью к некоторым типам новообразований 
(раку молочной железы, толстой кишки, желуд-
ка, поджелудочной железы). У носителей гете-
розиготных мутаций ATM повышен риск воз-
никновения опухолей простаты: кумулятивный 

риск РПЖ достигает 31  % к 80 годам [28]. Как 
и в случае мутаций BRCA1/2, патогенные вари-
анты ATM и CHEK2 связаны с развитием более 
агрессивных опухолей [12, 49]. При мкрРПЖ 
наследственные и соматические мутации ATM 
обнаруживаются с частотой 1,5−2  % и 5−7  % 
соответственно [11, 12, 25, 27, 50]. В отличие от 
BRCA1/2-ассоциированных РПЖ, подавляющее 
большинство опухолей с мутациями ATM, по 
всей видимости, не обладает чувствительностью 
к PARP-ингибиторам (таблица). Объективный 
ответ на терапию рукапарибом не наблюдался у 
больных с мутациями ATM (n = 49) в исследова-
нии TRITON2 [30], был зафиксирован только у 1 
из 12 (8,3 %) пациентов при терапии олапарибом 
(TOPARP-B) [31] и у 2/17 (11,8  %) пациентов, 
получавших талазопариб (TALAPRO-1) [32].

У носителей «транкирующих» (т.  е. приво-
дящих к укорочению белка) вариантов в гене 
CHEK2 кумулятивный риск РПЖ составляет 
25 % к 80 годам [28]. Распространенность вари-
антов CHEK2 существенно варьирует в разных 
популяциях и этнических группах. Для стран 
Северной Европы и славянских народностей 
описаны несколько «фаундер» (founder)-мута-
ций: CHEK2 c.1100delC, c.444+1G>A и del5395 
[51]. По нашим собственным данным, на эти 
три наследственных варианта пришлось абсо-
лютное большинство мутаций CHEK2 в выборке 
пациентов РПЖ, обогащённой метастатически-
ми случаями. Суммарная частота герминальных 
мутаций CHEK2 составила 2,6 % [38]. Информа-
ция о чувствительности CHEK2-ассоциирован-
ных опухолей к PARP-ингибиторам представле-
на малым числом наблюдений, в большинстве 
из которых лечение не имело объективного эф-
фекта [30, 31]. 

Минимальный эффект PARP-ингибиторов в 
случае мутаций ATM и CHEK2, по всей видимо-
сти, объясняется отсутствием в таких опухолях 
выраженного дефицита гомологичной рекомби-
нации. Для ATM- и CHEK2-ассоциированных 
РПЖ не характерно преобладание мутационно-
го профиля 3 (Cosmic Mutational Signature 3), 
специфичного для инактивации BRCA1/2 [43], 
или высокого индекса HRD [52]. В соответ-
ствии с этими данными, полногеномный анализ 
более чем 5  000 опухолей разных локализаций, 
включая РПЖ, продемонстрировал, что в по-
давляющем большинстве случаев (94  %) при-
чинами дефицита гомологичной рекомбинации 
являются повреждения генов BRCA1/2, PALB2 
и RAD51C; при этом ATM и CHEK2 не попали 
в число связанных с HRD локусов [8]. Отсут-
ствие признаков HRD при инактивации ATM и 
CHEK2 также было зафиксировано в опухолях 
молочной железы и поджелудочной железы [6, 
7, 53−55]. Интересно, что одним из механизмов 
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резистентности CHEK2-ассоциированных РПЖ 
к PARP-ингибиторам может быть повыше-
ние экcпрессии BRCA2, вызванное угнетением 
CHEK2-TP53-E2F7-зависимой транскрипцион-
ной репрессии [56]. В вышеупомянутой рабо-
те CHEK2-дефицитные клетки РПЖ оказались 
чувствительны к сочетанию ингибиторов PARP 
и ATR. 

Ген NBN

Ген NBN (NBS1) кодирует белок нибрин, 
один из компонентов комплекса MRE11/RAD50/
NBS1 (MRN), распознающего двунитевые раз-
рывы ДНК и привлекающего необходимые для 
репарации факторы. Гомозиготные мутации 
NBN вызывают редкое аутосомно-рецессивное 
заболевание  — синдром Ниймеген, в проявле-
ния которого входят микроцефалия, иммуноде-
фицит и повышенная частота неходжкинских 
лимфом, опухолей мозга и других типов зло-
качественных новообразований [57]. Синдром 
Ниймеген встречается с наибольшей частотой в 
славянских популяциях из-за распространённой 
«фаундер»-мутации c.657del5, обуславливающей 
до 90  % всех описанных случаев заболевания 
[58−60]. Вариант NBN c.657del5 в гетерозигот-
ном состоянии примерно в три раза увеличивает 
риск РПЖ у мужчин до 60 лет и связан с менее 
благоприятным течением и прогнозом заболева-
ния [33, 34, 61] (таблица). Интересно, что по 
данным польских исследователей, патогенность 
этой мутации в отношении риска рака проста-
ты может модифицироваться миссенс-вариантом 
в том же гене  — p.E185Q [61]. У российских 
пациентов c РПЖ мутация c.657del5 обнаружи-
вается с частотой примерно 1,3 % [38]. Опубли-
кованы единичные случаи лечения пациентов с 
мутациями NBN PARP-ингибиторами, которые 
свидетельствуют скорее об отсутствии выражен-
ной пользы этих препаратов [30, 32].

Ген PALB2

Ген PALB2, наряду с BRCA1 и BRCA2, являет-
ся одним из основных участников HRR. Он коди-
рует белок, необходимый для образования ком-
плекса BRCA (BRCA1-PALB2-BRCA2-RAD51) 
и реализации функции RAD51. Гомозиготные 
наследственные мутации PALB2 — причина ане-
мии Фанкони типа N, в то время как гетерозигот-
ные повреждения предрасполагают к развитию 
рака молочной железы, поджелудочной железы 
и рака яичника [62]. Выполненное в Польше 
эпидемиологическое исследование, включившее 
выборку из более чем 5400 пациентов с РПЖ, 
не обнаружило повышенной частоты мутаций 
PALB2 во всей когорте, однако выявило обога-

щение патогенными вариантами PALB2 среди 
агрессивных низкодифференцированных опухо-
лей [36]. Наследственные и соматические мута-
ции PALB2 обнаруживаются суммарно в менее, 
чем 1  % РПЖ [12, 25, 35] (таблица). Несмотря 
на невысокую частоту, идентификация повреж-
дений PALB2 имеет очевидное практическое зна-
чение, т.  к. аналогично BRCA1/2 они связаны с 
HRD и чувствительностью к PARP-ингибиторам 
и препаратам платины. В частности, для ассо-
циированных с биаллельными мутациями PALB2 
опухолей молочной железы и РПЖ свойственны 
высокая представленность мутационного профи-
ля 3, типичные для HRD профили хромосомных 
нарушений и сниженная способность формиро-
вать фокусы Rad51 после воздействия радиоак-
тивного излучения [7, 8, 43, 63, 64]. Количество 
описанных случаев лечения РПЖ c мутациями 
PALB2 PARP-ингибиторами пока невелико, но 
позволяет предположить, что их эффективность 
сопоставима с результатами терапии BRCA1/2-
опосредованных опухолей [13, 30, 37].

Ген CDK12

Соматические мутации в гене CDK12, часто 
затрагивающие оба аллеля гена, встречаются в 
3−7  % метастатических РПЖ, ассоциированы 
с низкой степенью дифференцировки и более 
поздними стадиями заболевания, резистентно-
стью к стандартным способам терапии и плохим 
прогнозом [39, 40, 65] (таблица). Ген CDK12 
кодирует циклин-зависимую киназу 12, выпол-
няющую различные связанные с репарацией 
ДНК функции. Инактивация CDK12 оказалась 
связанной с чувствительностью к PARP- инги-
биторам в клетках рака яичника [66], что послу-
жило основанием для включения этого гена в 
панели для анализа статуса генов HRR. Вместе 
с тем изучение данных геномного и экзомного 
секвенирования CDK12-ассоциированных РПЖ 
показало, что хотя для них характерен высокий 
уровень хромосомной нестабильности, наблю-
даемый паттерн хромосомных нарушений не 
соответствуют таковому при дефиците гомоло-
гичной рекомбинации. При инактивации CDK12 
возникает особый тип хромосомной нестабиль-
ности, специфичной чертой которого является 
большое число фокальных тандемных дуплика-
ций >  100  Kb [39, 43, 67]. Клинические дан-
ные относительно эффекта PARP-ингибиторов 
при CDK12-мутированном РПЖ неоднозначны: 
в ряде работ объективный ответ не наблюдался 
[13, 30, 40], хотя в объединённом анализе кли-
нических исследований удалось показать пользу 
лечения на уровне выживаемости без прогрес-
сирования и общей выживаемости [68]. На ос-
новании особенностей мутационных профилей 
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CDK12-ассоциированных РПЖ (большого числа 
химерных транскриптов, образующихся в ре-
зультате тандемных дупликаций) было сделано 
предположение об их потенциально высокой 
иммуногенности [39]. Результаты клиническо-
го испытания ипилимумаба и ниволумаба при 
CDK12-позитивном РПЖ, однако, не оправдали 
ожиданий и показали минимальный эффект им-
мунотерапии [69].

Другие гены HRR

При проведении клинических испытаний 
PARP-ингибиторов критерием для назначения 
лечения было присутствие мутации в каком-либо 
из генов, имеющих отношение к репарации по 
механизму гомологичной рекомбинации. Напри-
мер, в исследовании нирапариба (GALAHAD) 
оценивались восемь генов (ATM, BRCA1, BRCA2, 
BRIP1, CHEK2, FANCA, HDAC2, PALB2) [70], в 
исследовании талазопариба (TALAPRO)  — 11 
(ATM, ATR, BRCA1, BRCA2, CHEK2, FANCA, 
MLH1, MRE11A, NBN, PALB2, RAD51C) [32], в 
исследованиях олапариба (PROfound) и рукапа-
риба (TRITON), послуживших основанием для 
их одобрения FDA,  — 15 генов, входящих в 
коммерческую панель Foundation One Cdx (ATM, 
BRCA1, BRCA2, BARD1, BRIP1, CDK12, CHEK2, 
FANCA, PALB2, PPP2R2A, RAD51, RAD51B, 
RAD51C, RAD51D, RAD54L) [13, 14]. Наслед-
ственные или соматические дефекты во многих 
из перечисленных локусов (помимо описанных 
в предыдущих разделах) встречаются при РПЖ 
крайне редко, и поэтому полноценно охаракте-
ризовать их причастность к формированию HRD 
и клиническую значимость пока не удалось. 
В  клиническом испытании олапариба у пациен-
тов с мутациями в гене PPP2R2A наблюдалась 
тенденция к худшему ответу на лечение, чем в 
контрольной группе, поэтому данный ген не был 
включен в число показаний для этого препарата 
[71]. Отмечались единичные случаи позитивного 
эффекта PARP-ингибиторов или препаратов пла-
тины у пациентов с мутациями FANCA, BRIP1, 
RAD51B, RAD54L [13, 30, 70, 72]. По данным 
исследований с применением высокопроизво-
дительного секвенирования и функциональных 
тестов, дефицит гомологичной рекомбинации 
встречается при опухолях молочной железы или 
раке простаты в случае мутаций RAD51C [7, 8], 
BARD1 [64], RAD51D [73].

Влияние герминальных вариантов во многих 
из упомянутых генов HRR на риск развития 
РПЖ до сих пор не доказано или мало изучено. 
Так, пока не имеется убедительных данных о 
повышенной предрасположенности к РПЖ у но-
сителей мутаций в генах FANCA, FANCC, BRIP1, 
BARD1, RAD51C, MRE11A, RAD50 [5, 74−78].

Заключение

Молекулярно-генетическое исследование ге-
нов HRR при раке предстательной железы на-
правлено на персонализированный подбор лекар-
ственной терапии и выявление наследственных 
случаев заболевания. Наибольшей актуально-
стью в контексте подбора терапии анализ генов 
HRR обладает для метастатических опухолей, 
для которых характерна высокая частота как 
наследственных, так и соматических наруше-
ний HRR. К числу генов с наиболее очевидной 
предиктивной ролью в отношении PARP-инги-
биторов относятся BRCA1, BRCA2 и PALB2, в то 
время как CHEK2 и ATM не связаны с эффектив-
ностью этих препаратов. Увеличение риска РПЖ 
ассоциировано с носительством патогенных ва-
риантов BRCA2, BRCA1, ATM, CHEK2, NBN. 
Уточнение значимости мутаций в других генах 
HRR требует дальнейшего накопления клиниче-
ских и эпидемиологических данных. 
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