ОРИГИНАЛЬНЫЕ СТАТЬИ

Б. Экспериментальные исследования

© Коллектив авторов, 2018 УДК 615.849.1.036:616-006 Вопросы онкологии, 2018. Том 64, №5

Е.Е. Бекетов, Е.В. Исаева, Н.В. Наседкина, Е.П. Малахов, О.Ю. Голованова, Л.Н. Ульяненко, А.Е. Чернуха, В.О. Сабуров, О.Г. Лепилина, С.Е. Ульяненко

Биологическая эффективность сканирующего пучка протонов терапевтического комплекса «Прометеус» МРНЦ им. А.Ф. Цыба в исследованиях на культуре клеток мышиной меланомы B-16

Медицинский радиологический научный центр им. А.Ф. Цыба —

филиал Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр радиологии» Министерства Здравоохранения Российской Федерации, Обнинск

В основе применения протонов для задач лучевой терапии лежит фиксированное общепринятое значение их относительной биологической эффективности, равное 1,1. Многочисленные исследования показали, что ОБЭ протонного излучения не является постоянной величиной и зависит от ряда факторов. Целью настоящего исследования было определение ОБЭ тонкого сканирующего протонного пучка в центре распределенного пика Брэгга в экспериментах на культуре клеток мышиной меланомы В-16. Суспензию клеток облучали в водном фантоме горизонтальным пучком протонов с трех направлений (0, 90 и 180°) в дозах от 2 до 8 Гр. Модуляция энергии протонного излучения составляла 47,5÷92,0 МэВ. ОБЭ протонов определяли по клоногенной активности клеток, при сравнении с гамма-квантами 60Со. Для построения дозовых зависимостей использовали линейно-квадратичную модель. Полученные значения ОБЭ протонного излучения (ЛПЭ 3+8 кэВ/мкм) отличались в большую сторону от общепринятого значения, и составило на уровне 10% выживаемости 1,5. Полученные результаты в целом совпадают с данными зарубежных авторов, выполненными на разных установках.

Ключевые слова: протонная терапия, сканирующий пучок, ОБЭ, клоногенная активность, меланома В-16, ЛПЭ

Физическим преимуществом протонов, важным с точки зрения лучевой терапии, является пространственное распределение дозы, доставляемой непосредственно в опухоль. Протоны, как и более тяжелые ионы, характеризуются увеличением потерь энергии при прохождении через биологическую ткань в конце пробега. Эта особенность приводит к специфическому распределению поглощенной дозы, известному как пик Брэгга. Положение данного пика зависит от энергии частиц. Таким образом, если в состав пучка протонов входят частицы с различными (но строго определенными) энергиями, становится возможным облучение заданного объема биологической ткани в одинаковой дозе за счет так называемого распределенного пика Брэгга (spread-out Bragg peak — SOBP). Это обеспечивает высокую конформность облучения, подведение более высокой дозы в область опухолевого узла и защиту здоровых тканей за его пределами.

При использовании протонов учитывается их относительная биологическая эффективность (ОБЭ) — 1,1 по отношению к фотонам высоких энергий. Международная комиссия по радиационным единицам и измерениям (International Commission on Radiation Units and Measurements — ICRU) рекомендовала использовать эту величину коэффициента во всем спектре SOBP. Многочисленные исследования, в том числе выполненные в последнее время, показали, что значение коэффициента ОБЭ не является постоянной величиной и зависит от множества факторов: начальной энергии, линейной передачи энергии (ЛПЭ), дозы за одну фракцию, положения в SOBP, радиочувствительности ткани (соотношение α/β) и критериев оценки биологической эффективности [4, 7-9]. Эта многофакторность предполагает, что ОБЭ является непрерывной переменной. Поскольку в разных центрах протонной терапии применяются различные системы модуляции пучка, обязательной частью доклинических и клинических исследований каждого пучка протонов является радиобиологическое тестирование с оценкой ОБЭ.

Целью настоящего исследования было определение ОБЭ пучка протонов первой отечественной установки для проведения протонной терапии «Прометеус», расположенной на базе МРНЦ им. А.Ф. Цыба, в экспериментах на культуре клеток меланомы B16F10.

Материалы и методика

Культура клеток В-16. В качестве экспериментальной тест-системы использовали культуру клеток мышиной меланомы В16F10. Культуру клеток получили из ГУЗ «Мо-

сковский НИИ медицинской экологии», выращивали в монослое в культуральных флаконах (Corning, США) в среде RPMI-1640 (ПанЭко, Россия) с добавлением 10% эмбриональной телячьей сыворотки (Biosera, Франция) и гентамицина (ПанЭко, Россия) в количестве 0,01 мг/мл среды. Клетки культивировали в CO₂-инкубаторе (MCO-5AC, Sanyo, Япония) при температуре +37°C и 5% содержании CO₂. Характеристика клеточной линии приведена в ранее опубликованной работе авторов [3].

В день эксперимента клетки снимали с пластика смесью растворов версена (0,02%, ПанЭко, Россия) и трипсина (0,25%, ПанЭко, Россия) в соотношении 1:1, ресуспендировали в среде RPMI-1640, содержащей 10% сыворотки, до получения одиночных клеток, которые подсчитывали в камере Горяева и разводили до нужной концентрации (300-600 тыс. в 1 мл). Для облучения клеточную суспензию разливали в микроцентрифужные пробирки типа Эппендорф (Genfollower, Китай) по 1,3 мл. До облучения и после клетки содержали при пониженной температуре (на льду). Облучение проводили при комнатной температуре.

Клоногенная активность клеток. После облучения определяли клоногенную активность клеток. Для этого клетки ресуспендировали, уточняли их количество в камере Горяева (Минимед, Россия), разводили до нужной концентрации и высевали (от 1000 до 72 000 клеток на чашку в зависимости от дозы облучения) в чашки Петри диаметром 100 мм (Corning, США) в среду RPMI-1640 с добавлением 10% эмбриональной телячьей сыворотки. Клетки выдерживали в CO₂-инкубаторе при температуре +37°C течение 7-8 суток до формирования видимых невооруженным глазом колоний. По окончании инкубации культуральную среду удаляли, колонии окрашивали 2% раствором метиленового синего в 50% этаноле. Подсчет колоний вели на ручном счетчике Scan 100 (Interscience, Франция), учитывая колонии, содержащие 50 и более клеток. Фракцию клоногенных клеток выражали в процентах по отношению к высеянным при каждой дозе облучения с учетом выживаемости клеток в контроле.

Источник протонного излучения. Облучение проводили на установке «Прометеус» разработки ЗАО «Протом» (ускорение протонов производится синхротроном, вывод пучка горизонтальный) в водном фантоме. Расстояние от передней стенки фантома до устройства сканирующего вывода протонов составляло 70 см. Верификация положения фантома была проведена с двух направлений (0 и 90 градусов). Пробирку с клеточной суспензией после встряхивания на вортексе (V-1 Plus, Biosan, Латвия) помещали в центральное отверстие крышки водного фантома.

Облучение протонами проходило с трех направлений (0, 90 и 180°). Перед началом эксперимента был рассчитан план облучения. Доза облучения составила 2 Гр, объем PTV (Planning Target Volume — планируемый объем мишени) — 24,2 см³ при облучении с одного и 18,5 см³ при облучении с трех направлений. Для облучения протонами в дозах 4, 6 и 8 Гр использовали указанный план облучения, повторенный 2, 3 и 4 раза соответственно. Пауза между фракциями не превышала 10 с при облучении с одного и 20 с — при облучении с трех направлений (полей). Средняя мощность дозы при однопольном облучения до сигнала системы об его окончании), при трехпольном — 0,84 Гр/мин.

Энергия протонов на входе в фантом при облучении с одного поля составляла в среднем 78,9 МэВ. Данные по средней, минимальной и максимальной энергиям при трехпольном облучении представлены в табл. 1. В ходе сеансов облучения средний поток протонов при 2 Гр составил 1,82·10¹⁰ и 1,94·10¹⁰ частиц при однопольном и трехпольном облучениях соответственно. В зависимости от энергии пучка его диаметр варьировался от 3,7 до 6,8 мм. Облучение проходило в центре распределенного пика Брэгга.

Таблица 1. Энергия сканирующего пучка протонов на выходе из источника

Угол облучения, град.	0	90	180
Среднее значение энергии (X ± S), МэВ	82,5 ± 5,8 (n = 20)	74,5 ± 11,1 (n = 26)	78,1 ± 8,3 (n = 22)
Минимум, МэВ	73,0	47,5	53,0
Максимум, МэВ	92,0	89,0	89,5

До проведения экспериментов с клетками планы облучения проверялись с использованием цилиндрической ионизационной камеры ТМ30010-1, которую устанавливали в водном фантоме в тех же условиях, что и клетки. Оценка величины ЛПЭ проводилась с использованием расчетных методов Монте-Карло.

Источник фотонов. Источником стандартного излучения служила гамма-установка «Луч» (Co^{60} , $E_{cp} = 1,25$ МэВ). Мощность дозы ~ 1 Гр/мин. Дозы облучения: 2, 4, 6, 8, 10 Гр. Пробирки с клеточной суспензией после встряхивания облучали на столе в горизонтальном положении (без фантома).

Источник электронов. В качестве дополнительного стандартного источника излучения использовали отрицательно заряженные частицы — электроны. Источник излучения — импульсный терапевтический ускоритель электронов (Novac-11, Италия). Энергия электронов ~ 10 МэВ, частота импульсов 1 Гц, мощность дозы ~ 3,3 Гр/мин, дозы облучения: 2, 4, 6, 8 Гр. Пробирки с клеточной суспензией встряхивали и облучали горизонтально на специальной подставке на предметном столе (без фантома).

Статистическая обработка. Биологические эксперименты на всех источниках излучения были повторены 4 раза. Полученные данные по выживаемости клеток обрабатывали при помощи статистического программного обеспечения R (www.R-project.org) версии 3.4.1 и графического приложения Veusz версии 2.0.1.

Для построения дозовых зависимостей использовали линейно-квадратичную модель. Соответствие экспериментальных данных указанной модели оценивали по критерию χ^2 . Погрешность измерения дозы для протонов, электронов и фотонов в соответствии с аттестационной документацией дозиметрической аппаратуры находилась в пределах 5%. Погрешность оценки выживаемости клеток была установлена ранее и составила около 23,2% — были учтены, в том числе, ошибки при подсчете клеток в камере Горяева и количества колоний по итогам эксперимента [1]. При расчете ОБЭ погрешность выживаемости клеток (полученную по данным линейно-квадратичной модели), считали равной 5%, погрешность оценки ОБЭ — 10%.

Результаты и обсуждение

Дозовые зависимости клоногенной активности клеток мышиной меланомы B-16 после облучения протонами и гамма-излучением приведены на рис. 1.

Как следует из рисунка, дозовые зависимости для обоих типов излучений хорошо описываются линейно-квадратичной моделью, все кривые для протонов находятся ниже кривой гамма-излучения, что закономерно (с учетом более высокой биологической эффективности). Протонное и гамма- излучения при этом относятся к редкоионизирующим: в случае протонов ЛПЭ варьировалась от 3 до 8 кэВ/мкм, для гаммаквантов принято значение 0,3 кэВ/мкм. Экспе-

Рис. 1. Зависимость выживаемости клеток В-16 от дозы g-квантов, электронов и протонов

риментально полученные данные по протонам располагаются ниже расчетной кривой, что свидетельствует об их более высокой биологической эффективности (> 1,1).

Малый изгиб кривых подтверждает высокое соотношение а- и b-коэффициентов, что характерно для быстро пролиферирующих, в том числе опухолевых клеток, к которым относятся клетки мышиной меланомы B-16. С увеличением ЛПЭ излучения значение параметра a/b возрастает.

Значения показателя ОБЭ, рассчитанные на уровне 10% выживаемости клеток, для дозы 2 Гр для γ -излучения (стандартная РОД в лучевой терапии) и по соотношению α/α (максимальная ОБЭ), приведены в табл. 2. Для сравнения приводятся ранее опубликованные данные по ионам углерода [1]

Таблица 2. Значения коэффициентов ОБЭ, рассчитанных на основании дозовых зависимостей выживаемости клеток В-16

Тип излучения	ОБЭ _{а/а}	ОБЭ _{2 Гр}	ОБЭ _{10%}
Протоны	2,2 ± 0,2	1,9 ± 0,2	1,5 ± 0,2
Ионы углерода: плато	2,6 ± 0,3	2,1 ± 0,2	1,6 ± 0,2
Ионы углерода: пик	6,8 ± 0,7	5,6 ± 0,6	4,1 ± 0,4
Электроны	0,7 ± 0,1	0,9 ± 0,1	1,0 ± 0,1

Как видно из табл. 2, значение коэффициента ОБЭ протонного излучения отличается в большую сторону от общепринятого значения и составило на уровне 10% выживаемости клеток 1,5. Значение коэффициента на уровне выживаемости, соответствующем дозе фотонов 2 Гр, составило 1,9.

На сегодняшний день в мире исследования по оценке ОБЭ в нескольких положениях пика Брэгга (SOBP) были преимущественно проведены с использованием методов пассивного рассеяния, а для узких сканирующих пучков для анализа доступны ограниченные данные. Согласно исследованию I. Ibanez et al. [6] ОБЭ протонов, рассчитанное по показателю 10% выживаемости клеток меланомы В16, в области плато — до пика на кривой Брэгга (ЛПЭ — 3,4 кэВ/мкм) составляет 1,0, а в пике Брэгга (ЛПЭ — 14 кэВ/мкм) — 1,6. С учетом того, что в нашем исследовании был использован сканирующий пучок, усредняющий ЛПЭ (диапазон варьирования по облучаемому объему — 3÷8 кэВ/мкм), можно считать, что наши данные совпали с результатами I. Ibanez et al.

Согласно собранным Т. Friedrich et al. данным [5], полученным на наиболее часто использумых клеточных культурах, ОБЭ протонов по показателю 10% выживаемости клеток в диапазоне значений ЛПЭ 3÷8 кэВ/мкм варьирует от 0,95 до 1,47.

В исследовании О. Кеta et al. [7] была проведена оценка радиочувствительности клеточной линии меланомы человека НТВ140 к протонному излучению медицинского комплекса на базе Национального института ядерной физики (Катанья, Италия). Облучение проводили в середине SOBP терапевтического протонного пучка при мощности дозы 15 Гр/мин. Оценочное значение ЛПЭ составило 4,7 кэВ/мкм. Значение ОБЭ на уровне выживаемости, соответствующем 2 Гр по гамма-излучению, составило 2,1, что несколько выше, чем в проведенных нами экспериментах.

В работе, выполненной на установке IBA [9], значения ОБЭ по показателю 10% выживаемости составили на входе в пик Брэгга (среднедозовая ЛПЭ 1,0 кэВ/мкм) 1,15, в проксимальной части пика (ЛПЭ 2,0 кэВ/мкм) — 1,23, в средней (ЛПЭ 2,5 кэВ/мкм) — 1,37, в дистальной (ЛПЭ 4,7 кэВ/мкм) — 1,53. В целом значения ОБЭ в средней части распределенного пика Брэгга сопоставимы с полученными нами данными (1,37 против 1,50), несмотря на то, что уровни энергий протонов отличались, в качестве тест-системы была использована другая клеточная линия (нормальные фибробласты кожи новорожденного человека CC-2509-Lonza) с иным соотношением α/β .

К. Maeda et al. [8] исследовали сканирующий карандашный пучок протонов ProBeat RT (Hitachi, Япония). В центре пика Брэгга ОБЭ_{10%} и ОБЭ_{2Гр} составляли 1,15 и 1,46 соответственно. В дистальной области отмечены более высокие значения ОБЭ (1,50 для ОБЭ_{10%} и 2,52 для ОБЭ_{2Гр}). Данные для середины распределенного пика Брэгга также сопоставимы с нашими результатами, хотя клетки линии V-79 имеют низкое соотношение α/β .

Биологическое действие протонов широко исследуется в течение длительного периода времени, но до сих пор однозначного ответа об оценке величины ОБЭ нет. Результаты проведенных нами исследований, в целом, как и ряд работ других авторов, выполненных in vitro в разных странах и на разных источниках излучения, показывают, что фактическое (полученное экспериментально) значение ОБЭ протонного излучения отличается от рекомендованного ICRU 1,1 в большую сторону. Большинство авторов указывает, что ОБЭ увеличивается с глубиной в распределенном пике Брэгга из-за возрастания ЛПЭ, достигая максимума в его дистальной части [8, 9]. Данная работа проводилась в рамках выполнения тем государственного задания МРНЦ им. А.Ф. Цыба — филиала ФГБУ «НМИРЦ» Минздрава России за 2015-2017 г.

Коллектив авторов выражает благодарность сотрудникам центра протонной терапии на базе филиала за неоценимую помощь в проведении данного исследования.

ЛИТЕРАТУРА

- Бекетов Е.Е., Исаева Е.В., Трошина М.В., и др. Результаты предварительных исследований по оценке радиобиологической эффективности пучка ионов углерода ускорительного комплекса У-70 // Радиационная биология. Радиоэкология. 2017. Т. 57– № 5. С. 462-470.
- Каприн А.Д., Галкин В.Н., Жаворонков Л.П. и др. Синтез фундаментальных и прикладных исследований — основа обеспечения высокого уровня научных результатов и внедрения их в медицинскую практику // Радиация и риск. — 2017. — Т. 26. — № 2. — С. 26-40.
- Beketov E., Isaeva E., Koryakin S. et al. The study of biological effectiveness of U-70 accelerator carbon ions using melanoma B-16 clonogenic assay // Rad. Applic. — 2017. — Vol. 2. — I. 2. — P. 90-93.
- Cuaron J.J, Chang C., Lovelock M., et al. Exponential increase in relative biological effectiveness along distal edge of a proton Bragg peak as measured by deoxyribonucleic acid double-strand breaks // Int. J. Radiat. Oncol. Biol. Phys. 2016. Vol. 95. I. 1. P. 62-69.
- Friedrich T., Scholz U., Elsässer T. et al. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation // J. Radiat. Res. — 2013. — Vol. 54. — I. 3. — P. 494-514.
- Ibanez I., Bracalente C., Molinari B. et al. Induction and Rejoining of DNA Double Strand Breaks Assessed by H2AX Phosphorylation in Melanoma Cells Irradiated with Proton and Lithium Beams // Int J Radiat Oncol Biol Phys. -2009. – V.74. – I. 4. – P. 1226-1235.
- 7. Keta O., Todorovic D., Popovic N., et al. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ -rays and proton. // Arch Med Sci. 2014. V.10. I.3. P.578-586.
- Maeda K., Yasui H., Matsuura T., et al. Evaluation of the relative biological effectiveness of spot-scanning proton irradiation in vitro. // J Radiat Res. — 2016. — V.57. — I.3. — P.307-311.
- Michaelidesova A., Vachelova J., Puchalska M., et al. Relative biological effectiveness in a proton spread-out Bragg peak formed by pencil beam scanning mode // Australas. Phys. Eng. Sci. Med. – 2017. – Vol. 40. – I. 2. – P. 359-368.

Поступила в редакцию 16.01.2018 г.

E.E. Beketov, E.V. Isaeva, N.V. Nasedkina, E.P. Malakhov, O.Yu. Golovanova, L.N. Uliyanenko, A.E. Chernukha, V.O. Saburov, O.G. Lepilina, S.E. Uliyanenko

Biological efficiency of the proton scanning beam of the therapeutic complex «Prometheus» of the A.F. Tsyb Medical Radiological Research Center in studies on cell culture of murine melanoma B-16

A.F. Tsyb Medical Radiological Research Center, National Medical Research Center of Radiology Moscow

The basis for the use of protons for radiation therapy tasks is a fixed conventional value of their relative biological efficiency equal to 1,1. Numerous studies have showed that RBE of proton radiation is not a constant value and depends on a number of factors. The purpose of this study was to determine RBE of a thin scanning proton beam at the center of the distributed Bragg peak in experiments on the culture of murine B-16 melanoma cells. The cell suspension was irradiated in an aqueous phantom by a horizontal proton beam from three directions (0,90 and 180°) in doses from 2 to 8 Gy. Modulation of the energy of proton radiation was 47,5÷92,0 MeV. RBE protons were determined from the clonogenic activity of the cells compared with 60Co gamma quanta. A linear-quadratic model was used to construct the dose dependencies. Obtained RBE values of proton radiation (LET 3÷8 keV/µm) differed in the big party from the generally accepted value and was at the level of 10% survival rate of 1.5. The results obtained generally coincided with data of foreign authors performed on different facilities.

Key words: proton therapy, scanning beam, RBE, clonogenic activity, melanoma B-16, LET