Threshold Expression Levels of Tumor Control Genes and microRNAs in Tumor and Healthy Tissue of Colorectal Cancer Patients
pdf (Русский)
pdf (Supplement) (Русский)

Keywords

miRNA
colorectal cancer
threshold level
gene expression
miRNA-21
miRNA-342
E2F3
NFKB

How to Cite

Sluzhev , M. I., Zaraiskii, M. I., Semiglazov, V. V., Semiglazova, T. Y., Tkachenko, E. V., Kondratev, S. V., Brish, N. A., Alekseeva, Y. V., Abasova, S. V., Kozyukalov, A. S., Petrik, I. V., & Sidorova, A. N. (2024). Threshold Expression Levels of Tumor Control Genes and microRNAs in Tumor and Healthy Tissue of Colorectal Cancer Patients. Voprosy Onkologii, 70(4), 696–706. https://doi.org/10.37469/0507-3758-2024-70-4-696-706

Abstract

Introduction. Tumor control genes and miRNAs play an important role in the tumor process in colorectal cancer (CRC). The expression of these genes differs in tumor and healthy tissues. There is no data on threshold levels of gene expression in tumors and healthy tissues at different distances.

Aim. The purpose of the study is to determine the threshold levels of expression of tumor control genes (E2F1, E2F3, TGFB, NFKB, KLF-12, EGFR and MMP9) and miRNAs (miRNA-15, -16, -21, -34, -126, -128, - 210 and - 342) in tumor and healthy tissues at distances of 5 and 10 cm from the tumor in CRC patients.

Materials and Methods. The study included 10 patients with colorectal cancer. Diagnosis was made by sigmoidoscopy or colonoscopy with biopsy of tumor and healthy tissue at a distance of 5 cm and 10 cm from the tumor.  The samples were tested for the expression levels of tumor control genes. (E2F1, E2F3, TGFB, NFKB, KLF-12, EGFR and MMP9) and miRNAs (miRNA-15, -16, -21, -34, -126, -128, -210 and - 342).

Results. The threshold expression level of the miRNA-21 gene was determined to be 7.21 REU with a sensitivity of 90 % and specificity 89.5 % (p = 0.00004); the threshold level of expression of the miRNA-342 gene was equal to 16.04 REU with a sensitivity of 90 % and a specificity of 84.2 % (p = 0.00027); threshold level of E2F3 gene expression was equal to 0.380 REU with a sensitivity of 80 % and specificity of 68.4 % (p = 0.031); threshold level of NFkB gene expression was equal to 0.243 REU with a sensitivity of 70 % and specificity of 78.9 % (p = 0.022). It was found that the larger the tumor size, the lower the expression level of the miRNA-21 and miRNA-342 genes (r = –0.991, p = 0.000015 and r = –0.908, p = 0.005 respectively).

Conclusion. Threshold levels in the expression of the E2F3, miRNA-21, miRNA-342 and NFKB genes were identified. Increased levels of miR-21 and decreased levels of miR-342 in healthy tissue may be a factor in carcinogenesis and a predictor of local relapse and progression. These data can be used in clinical studies assessing the prognostic and predictive role of gene expression.

https://doi.org/10.37469/0507-3758-2024-70-4-696-706
pdf (Русский)
pdf (Supplement) (Русский)

References

Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в россии в 2021 году (заболеваемость и смертность). Москва: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022: 252.-URL: https://oncology-association.ru/wp-content/uploads/2021/10/zabol.-i-smertn.-2019-elektr.versiya.pdf. [Kaprin A.D., Starinsky V.V., Shakhzadova A.O. Malignant neoplasms in Russia in 2021 (morbidity and mortality). Moscow: P.A. Herzen MNIOI - branch of FGBU «NMRC Radiology» of the Ministry of Health of Russia. 2022: 252.-URL: https://oncology-association.ru/wp-content/uploads/2021/10/zabol.-i-smertn.-2019-elektr.versiya.pdf. (In Rus)].

Kim J., Kim H., Lee M.S., et al. Transcriptomes of the tumor-adjacent normal tissues are more informative than tumors in predicting recurrence in colorectal cancer patients. J Transl Med. 2023; 21(1): 209.-DOI: 10.1186/s12967-023-04053-2.

Lin D., Fan W., Zhang R., et al. Molecular subtype identification and prognosis stratification by a metabolism-related gene expression signature in colorectal cancer. J Transl Med. 2021; 19(1): 279.-DOI: https://doi.org/10.1186/s12967-021-02952-w.

Shen X., Su Z., Dou Y., Song X. A novel investigation into an E2F transcription factor-related prognostic model with seven signatures for colon cancer patients. IET Syst Biol. 2023; 17(4): 187-97.-DOI: https://doi.org/10.1049/syb2.12069.

Xanthoulis A., Kotsinas A., Tiniakos D., et al. The relationship between E2F family members and tumor growth in colorectal adenocarcinomas: a comparative immunohistochemical study of 100 cases. Appl Immunohistochem Mol Morphol. 2014; 22(6): 471-7.-DOI: https://doi.org/10.1097/PAI.0b013e3182598198.

Yao H., Lu F., Shao Y. The E2F family as potential biomarkers and therapeutic targets in colon cancer. PeerJ. 2020; 8: e8562.-DOI: https://doi.org/10.7717/peerj.8562.

Shamekhi S., Abdolalizadeh J., Ostadrahimi A., et al. Apoptotic effect of saccharomyces cerevisiae on human colon cancer SW480 cells by regulation of Akt/NF-ĸB signaling pathway. Probiotics & Antimicro Prot. 2020; 12(1): 311-9.-DOI: https://doi.org/10.1007/s12602-019-09528-7.

Jana A., Krett N.L., Guzman G., et al. NFkB is essential for activin-induced colorectal cancer migration via upregulation of PI3K-MDM2 pathway. Oncotarget. 2017; 8(23): 37377-93.-DOI: https://doi.org/10.18632/oncotarget.16343.

Murphrey M.B., Quaim L., Varacallo M. Biochemistry, epidermal growth factor receptor. in: StatPearls. Treasure Island (FL): StatPearls Publishing. 2023 (2023.09.30).-URL: http://www.ncbi.nlm.nih.gov/books/NBK482459/.

del Carmen S., Corchete L.A., Gervas R., et al. Prognostic implications of EGFR protein expression in sporadic colorectal tumors: Correlation with copy number status, mRNA levels and miRNA regulation. Sci Rep. 2020; 10(1): 4662.-DOI: https://doi.org/10.1038/s41598-020-61688-7.

Wu C.C., Hou B.C., Yang Y.H., et al. Circ_0084188 promotes colorectal cancer progression by sponging miR-654-3p and regulating kruppel-like factor 12. KJMS. 2023. (30.09.2023).-URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/kjm2.12749.

Li Z.L., Wang Z.J., Wei G.H., et al. Changes in extracellular matrix in different stages of colorectal cancer and their effects on proliferation of cancer cells. WJGO. 2020; 12(3): 267-75.-DOI: https://doi.org/10.4251/wjgo.v12.i3.267.

Jiang K., Chen H., Fang Y., et al. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness. J Exp Clin Cancer Res. 2021; 40(1): 21.-DOI: https://doi.org/10.1186/s13046-020-01816-3.

Liu L., Wang D., Qiu Y., et al. Overexpression of microRNA-15 increases the chemosensitivity of colon cancer cells to 5-fluorouracil and oxaliplatin by inhibiting the nuclear factor-κB signalling pathway and inducing apoptosis. Exp Ther Med. 2017. (15.07.2021).-URL: http://www.spandidos-publications.com/10.3892/etm.2017.5675.

Kim N.H., Kim H.S., Kim N.G., et al. p53 and MicroRNA-34 are suppressors of canonical wnt signaling. Sci Signal. 2011; 4(197): ra71-ra71.-DOI: https://doi.org/10.1126/scisignal.2001744.

Huang M.Y., Yuan W., Wu S., et al. RhoA: The key signaling pathway of microRNA-126 in suppressing the epithelial-mesenchymal transition, proliferation, migration, and invasion of colorectal cancer cells. J Gastroenterol Hepatol. 2017: 133-133.

Chang Y., Zhang Q., Dong Z., et al. MicroRNA-128 inhibits the development of human colon cancer by targeting Rho family GTPase 3. J Taibah Univ SCI. 2022; 16(1): 139-46.-DOI: https://doi.org/10.1080/16583655.2022.2027692.

Yang H., Li Q., Niu J., et al. microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget. 2016; 7(3): 2709-20.-DOI: https://doi.org/10.18632/oncotarget.6458.

Kashani E., Hadizadeh M., Chaleshi V., et al. The differential DNA hypermethylation patterns of microRNA-137 and microRNA-342 locus in early colorectal lesions and tumours. Biomolecules. 2019; 9(10): 519.-DOI: https://doi.org/10.3390/biom9100519.

Zhang W., Zhou F., Jiang D., et al. Association of the expression level of miR-16 with prognosis of solid cancer patients: a meta-analysis and bioinformatic analysis. Dis Markers. 2020; 2020: 1-9.-DOI: https://doi.org/10.1155/2020/8815270.

You C., Jin L., Xu Q., et al. Expression of miR‑21 and miR‑138 in colon cancer and its effect on cell proliferation and prognosis. Oncol Lett. 2019; 17(2): 2271-7.-DOI: https://doi.org/10.3892/ol.2018.9864.

Sabry D., El-Deek S.E.M., Maher M., et al. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: impact of HIF-1α-VEGF signaling pathway. Mol Cell Biochem. 2019; 454(1): 177-89.-DOI: https://doi.org/10.1007/s11010-018-3462-1.

Sazanov A.A., Kiselyova E.V., Zakharenko A.A., et al. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genetics. 2017; 58(2): 231-7.-DOI: https://doi.org/10.1007/s13353-016-0379-9.

Служев М.И., Зарайский М.И., Семиглазов В.В., et al. Сравнительный анализ профилей экспрессии генов опухолевого контроля и микроРНК в опухолевой и перифокальной ткани у пациентов с колоректальным раком. Сибирский онкологический журнал. 2022; 21(2): 55-64. [Sluzhev M.I., Zaraisky M.I., Semiglazov V.V., et al. Comparative analysis of tumor control gene and microRNA expression profiles in tumor and adjacent tissues in patients with colorectal cancer. Sib Onkol Ž. 2022; 21(2): 55-64. (In Rus)].

Dang C., Gilewski T.A., Surbone A., Norton L. Growth curve analysis. in: Holland-Frei Cancer Medicine 6th edition. BC Decker. 2003. (22.09.2023).-URL: https://www.ncbi.nlm.nih.gov/books/NBK13434/.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024