Свойства и функции белка TP/PD-ECGF — фермента и фактора ангиогенеза в норме и при неопластической патологии
Загрузок: 5
Просмотров: 139
pdf

Ключевые слова

тимидинфосфорилаза
опухолевый рост
ангиогенез

Как цитировать

Борзенко , Б., Федорова, А., Бакурова, Е., & Богатырева, Е. (2021). Свойства и функции белка TP/PD-ECGF — фермента и фактора ангиогенеза в норме и при неопластической патологии. Вопросы онкологии, 67(6), 746–754. https://doi.org/10.37469/0507-3758-2021-67-6-746-754

Аннотация

Тимидинфосфорилаза является ключевым ферментом метаболизма тимидина и фактором ангиогенеза – PD/ECGF. Фермент одновременно катализирует как фосфоролиз тимидина до тимина и рибозо-1-фосфата, так и обратный перенос фосфопентозы на тимин. Установлена высокая активность ТФ в опухолевых тканях. Выявлено участие фермента в пролиферативных процессах при целом ряде хронических воспалительных заболеваний. Возрастание экспрессии ТФ при злокачественном росте характеризует агрессивное течение заболевания и негативный прогноз. Высокая активность ТФ взаимосвязана с прорастанием сосудов и метастазированием.

С другой стороны, фермент ингибирует процессы апоптоза, индуцируемые гипоксией, стимулирует продукцию воспалительных цитокинов и интерферонов. Эти свойства легли в основу принципа использования ингибиторов ТФ в качестве лекарственных препаратов при химиотерапии. Кроме того, PD/ECGF принимает участие в летальном синтезе 5-фторурацила из капецитабина и других предшественников. Такая особенность указала на возможность использования фермента в качестве биомаркера при лечении онкологических больных. Определение активности ТФ в сыворотке крови пациентов с злокачественными новообразованиями дает возможность прогнозировать, как течение заболевания, так и ответ опухоли на химиотерапию.

https://doi.org/10.37469/0507-3758-2021-67-6-746-754
Загрузок: 5
Просмотров: 139
pdf

Библиографические ссылки

Бакурова Е.М. Особенности генерации 2-дезокси-α-D-рибозо-1-фосфата опухолью, связь с продукцией активных форм кислорода // Актуальные вопросы биологической физики и химии. 2018;3(3):584-587 [Bakurova EM. The features of tumoral 2-deoxy-D-ribose-1-phosphate generation, association with production of reactive oxygen species // Russian Journal of Biological Physics and Chemistry. 2018;3(3):584-587 (in Russ.)].

Бакурова Е.М., Борзенко Б.Г., Василенко И.В. Тимидинфосфорилаза — перспективный маркер эпителиально-мезенхимальной трансформации опухоли // Медицинский алфавит. 2016;19(3):31-32 [Bakurova EM, Borzenko BG, Vasilenko IV. Thymidine phosphorylase as perspective marker of epithelialmesenchymal transition of tumor // Meditsinskiy alfavit. 2016;19(3):1-32 (in Russ.)].

Борзенко Б.Г., Бакурова Е.М. Нарушение метаболизма предшественников ДНК в слизистой оболочки желудка как показатель вероятного озлокачествления язвы этого органа // Вопросы онкологии. 2008;54(2):184-187 [Borzenko BG, Bakurova EM. Disturbed metabolism of gastric mucosa DNA precursors as prognosticator of neoplastic transformation of gastric ulcer // Vopr Onkol. 2008;54(2):184-187 (In Russ.)].

Клинические рекомендации по диагностике и лечению больных раком прямой кишки. М.: Ассоциация онкологов России, 2014 [Clinical guidelines for diagnosis and treatment of colorectal cancer. Moscow: association of oncologists of Russia, 2014 (In Russ.)].

Проект: медицинская методология оказания медицинской помощи пациентам, страдающим раком ободочной кишки / разраб. Кокушкин К.А. М., 2017 [Project: medical methodology for health care management of patients with colorectal cancer / Kokushkin K.A. Moscow, 2017 (in Russ.)].

Борзенко Б.Г., Верхова О.О, Помазан В.О. и др. Метаболізм аденозину та тимідину у здорових жінок різного віку та у жінок з мастопатією // Укр. Біохім. Журн. 1999;71(3):86-89 [Borzenko BG, Verkhova OO, Pomazan VO et al. Metabolism of adenosine and thymidine in healthy females of different ages and females with mastopathies // Ukr Biokhim Zh, 1999;71(3):86-9. (In Russ.)].

Almandil NB, Taha M, Farooq R et al. Synthesis of thymidine phosphorylase inhibitor based on quinoxaline derivatives and their molecular docking study // Molecules. 2019;24(1002):1-18.

Asai K, Nakanishi K, Isobe I et al. Neurotrophic action of gliostatin on cortical neurons. Identity of gliostatin and platelet-derived endothelial cell growth factor // Journal of Biological Chemistry. 1992;28(267):20311–20316.

Balzarini J, Gamboa AE, Esnouf R et al. 7-Deazaxanthine, a novel prototype inhibitor of thymidine phosphorylase // FEBS Letters. 1998;438(1-2):91–95.

Baynes JW. The role of AGEs in aging: Causation or correlation // Experimental Gerontology. 2001;36(9):1527–1537.

Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies // Journal of Pathology. 2002;3(196):254–265.

Borzenko BG, Bakurova EM, Popovich YuA et al. Activity of thymidilate «salvage pathway» enzymes in human gastric cancer and blood serum: Correlation with treatment modalities // Experimental Oncology. 2013;1(35):37–40.

Bronckaers A, Gago F, Balzarini Jan, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy // Medicinal Research Reviews. 2009;29(6):903–953.

Brown NS, Jones A, Fujiyama C et al. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors // Cancer Research. 2000;22(60):6298–6302.

Brown NS, Bicknell R. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis // Biochemical Journal. 1998(334):1–8.

Cao D, Russell RL, Zhang D et al. Uridine phosphorylase (-/-) murine embryonic stem cells clarify the key role of this enzyme in the regulation of the pyrimidine salvage pathway and in the activation of fluoropyrimidines // Cancer Research. 2002;62(8):2313–2317.

Creamer D, Jaggar R, Allen M et al. Overexpression of the angiogenic factor platelet-derived endothelial cell growth factor/thymidine phosphorylase in psoriatic epidermis // British Journal of Dermatology. 1997;137(6):851–855.

de Bruin M, Temmink O, Hoekman K et al. Role of platelet derived endothelial cell growth factor / thymidine phosphorylase in health and disease // Cancer Therapy. 2006;4):99–124.

Desgranges C, Razaka G, Rabaud M, Bricaud H. Catabolism of thymidine in human blood platelets purification and properties of thymidine phosphorylase // BBA Section Nucleic Acids And Protein Synthesis. 1981;654(2):211–218.

Desgranges C, Razaka G, Rabaud M et al. Phosphorolysis of (E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU) and other 5-substituted-2’-deoxyuridines by purified human thymidine phosphorylase and intact blood platelets // Biochemical Pharmacology. 1983;32(23):3583–3590.

Elamin YY, Rafee S, Osman N et al. Thymidine Phosphorylase in Cancer; Enemy or Friend? // Cancer Microenvironment. 2016;9(1):33–43.

Fox SB, Moghaddam A, Westwood M et al. Platelet‐derived endothelial cell growth factor/thymidine phosphorylase expression in normal tissues: An immunohistochemical study // The Journal of Pathology. 1995;176(2):183–190.

Friedkin M, Roberts D. The enzymatic synthesis of nucleosides: I. Thymidine phosphorylase in mammalian tissue // J. Biol. Chem. 1954(207):245–256.

Fujimoto J, Sakaguchi H, Hirose R et al. Expression of platelet-derived endothelial cell growth factor (PD-ECGF) and its mRNA in uterine cervical cancers // British Journal of Cancer. 1999;79(7/8):1249–1254.

Fujimoto K, Hosotani R, Wada M et al. Expression of two angiogenic factors, vascular endothelial growth factor and platelet-derived endothelial cell growth factor in human pancreatic cancer, and its relationship to angiogenesis // European Journal of Cancer. 1998;34(9):1439–1447.

Fujiwaki R, Hata K, Iida K et al. Co-expression of vascular endothelial growth factor and thymidine phosphorylase in endometrial cancer // Acta Obstet Gynecol Scand. 1999;78:728–734.

Fukushima M, Suzuki N, Emura T et al. Structure and activity of specific inhibitors of thymidine phosphorylase to potentiate the function of antitumor 2′-deoxyribonucleosides // Biochemical Pharmacology. 2000;59(10):1227–1236.

Furukawa T, Yoshimura A, Sumizawa T et al. Angiogenic factor // Nature. 1992;23 (356):668.

Giatromanolaki A, Sivridis E, Maltezos E et al. Upregulated hypoxia inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis // Arthritis research & therapy. 2003. Vol. 5(4):193–201.

Goto H, Kohno K, Sone S et al. Interferon γ-dependent induction of thymidine phosphorylase/platelet-derived endothelial growth factor through γ-activated sequence-like element in human macrophages // Cancer Research. 2001;61(2):469–473.

Hagiwara K, Stenman G, Honda H et al. Organization and chromosomal localization of the human platelet-derived endothelial cell growth factor gene // Molecular and Cellular Biology. 1991;11(4):2125–2132.

Haraguchi M, Furukawa T, Sumizawa T et al. Sensitivity of Human KB Cells Expressing Platelet-Derived Endothelial Cell Growth Factor to Pyrimidine Antimetabolites // Cancer Research. 1993;53(23):5680–5682.

Haraguchi M, Miyadera K, Uemura K et al. Angiogenic activity of enzymes // Nature. 1994;368(6468):198.

Heidelberger C, Chaudhuri NK, Danneberg P et al. Fluorinated Pyrimidines, A New Class of Tumour-Inhibitory Compounds // Nature. 1957;179:663–666.

Hotchkiss KA, Ashton AW, Klein RS et al. Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration // Cancer Research. 2003;63(2):527–533.

Ikeda R. et al. Molecular basis for the inhibition of hypoxia-induced apoptosis by 2-deoxy-D-ribose // Biochemical and Biophysical Research Communications. 2002;291(4):806–812.

Ikeda R, Furukawa T, Kitazono M et al. Thymidine phosphorylase inhibits the expression of proapoptotic protein BNIP3 // Biochemical and Biophysical Research Communications. 2008;370(2):220–224.

Ishikawa F, Miyazono K, Hellman U et al. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor // Nature. 1989;338:557–562.

Ishitsuka H. Capecitabine: Preclinical pharmacology studies // Investigational New Drugs. 2000;18(4):343–354.

Javaid S, Saad SM, Zafar H et al. Thymidine phosphorylase and prostrate cancer cell proliferation inhibitory activities of synthetic 4-hydroxybenzohydrazides: In vitro, kinetic, and in silico studies // PLoS ONE. 2020;15(1).

Kimura Y, Morohashi S, Yoshizawa T et al. Clinicopathological significance of vascular endothelial growth factor, thymidine phosphorylase and microvessel density in colorectal cancer // Molecular Medicine Reports. 2016;13(2):1551–1557.

Kitazono M, Takebayashi Y, Ishitsuka K et al. Prevention of hypoxia-induced apoptosis by the angiogenic factor thymidine phosphorylase // Biochem Biophys Res Commun. 1998;23(3):797–803.

Kobashi N, Matsumoto H, Zhao S et al. The thymidine phosphorylase imaging agent 123I-IIMU predicts the efficacy of capecitabine // Journal of Nuclear Medicine. 2016;57(8):1276–1281.

Kono A, Hara Y, Sugata S et al. Activation of 5’-deoxy-5-fluorouridine by thymidine phosphorylase in human tumors // Chem. Pharm. Bull. 1983;31(1):175–178.

Kouni MH, Naguib FNM, Naguib FNM. Differences in Activities and Substrate Specificity of Human and Murine Pyrimidine Nucleoside Phosphorylases: Implications for Chemotherapy with 5-Fluoropyrimidines // Cancer Research. 1993;53(16):3687–3693.

Lee SJ, Yeo JS, Lee HJ et al. Thymidine phosphorylase influences [18F] fluorothymidine uptake in cancer cells and patients with non-small lung cancer // European Journal of Nuclear Medicine and Molecular Imaging. 2014;41(7):1327–1335.

Liu H, Liu Z, Du J et al. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma // Science Translational Medicine. 2016;8(353):1–11.

Maeda K, Kang SM, Ogawa M et al. Combined analysis of vascular endothelial growth factor and platelet- derived endothelial cell growth factor expression in gastric carcinoma // International Journal of Cancer. 1997;74(5):545–550.

Makower D, Wadler S, Haynes H, Schwartz L. Interferon Induces Thymidine Phosphorylase/Platelet-derived Endothelial Cell Growth Factor Expression in Vivo // Clinical Cancer Research. 1997;3(6):923–929.

Marchetti S, Chazal M, Dubreuil A et al. Impact of thymidine phosphorylase surexpression on fluoropyrimidine activity and on tumour angiogenesis // British Journal of Cancer. 2001. Vol. 85(3):439–445.

Matsuura T, Kuratate I, Teramachi K et al. Thymidine phosphorylase expression is associated with both increase of intratumoral microvessels and decrease of apoptosis in human colorectal carcinomas // Cancer Research. 1999;59(19):5037–5040.

Miwa M, Ura M, Nishida M et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5 fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue // European Journal of Cancer. 1998;34(8):1274–1281.

Miyazono K, Okabe T, Urabe A et al. Purification and properties of an endothelial cell growth factor from human platelets // Journal of Biological Chemistry. 1987;262(9):4098–4103.

Moghaddam A, Bicknell R. Expression of Platelet-Derived Endothelial Cell Growth Factor in Escherichia coli and Confirmation of Its Thymidine Phosphorylase Activity // Biochemistry. 1992;31(48):12141–12146.

Mori SI, Takao S, Ikeda R et al. Thymidine phosphorylase suppresses Fas-induced apoptotic signal transduction independent of its enzymatic activity // Biochemical and Biophysical Research Communications. 2002;295(2):300–305.

Osaki M, Sakatani T, Okamoto E et al. Thymidine phosphorylase expression results in a decrease in apoptosis and increase in intratumoral microvessel density in human gastric carcinomas // Virchows Archiv. 2000;437:31–36.

Pinedo HM, Peters GJ. Fluorouracil: biochemistry and pharmacology // Journal of Clinical Oncology. 1988;6(10):1653–1664.

Piper AA, Fox RM. Biochemical Basis for the Differential Sensitivity of Human T– and B-Lymdhocvte Lines to 5-Fluorouracil // Cancer Research. 1982;42(9):3753–3760.

Pugmire MJ, Cook WJ, Jasanoff A et al. Structural and theoretical studies suggest domain movement produces an active conformation of thymidine phosphorylase // Journal of Molecular Biology. 1998;281(2):285–299.

Schröter D, Höhn A. Role of Advanced Glycation End Products in Carcinogenesis and their Therapeutic Implications // Current Pharmaceutical Design. 2019;24(44):5245–5251.

Schwartz EL, Wan E, Wang FS, Baptiste N. Regulation of expression of thymidine phosphorylase/platelet-derived endothelial cell growth factor in human colon carcinoma cells // Cancer Research. 1998;58(7):1551–1557.

Schwartz M. Thymidine Phosphorylase from Escherichia coli Properties and Kinetics // Eur. J. Biochem. 1971;21(2):191–198.

Spadari S, Ciarrocchi G, Focher F et al. 5-Iodo-2’-deoxy-L-uridine and (E)-5-(2-bromovinyl)-2’-deoxy-L-uridine: Selective phosphorylation by herpes simplex virus type 1 thymidine kinase, antiherpetic activity, and cytotoxicity studies // Molecular Pharmacology. 1995;47(6):1231–1238.

Spraggon G, Stuart D, Ponting C et al. Crystallization and X-ray diffraction study of recombinant platelet-derived endothelial cell growth factor // Journal of Molecular Biology. 1993;234(3):879–880.

Tabata S, Ikeda R, Yamamoto M et al. Thymidine phosphorylase enhances reactive oxygen species generation and interleukin-8 expression in human cancer cells // Oncology Reports. 2012;28(3):895–902.

Tabata S, Yamamoto M, Goto H et al. Thymidine Catabolism as a Metabolic Strategy for Cancer Survival // Cell Reports. 2017;19(7):1313–1321.

Tabata S, Yamamoto M, Goto H et al. Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells // Scientific Reports. 2018;8(1):1–8.

Toi M, Bando H, Horiguchi S et al. Modulation of thymidine phosphorylase by neoadjuvant chemotherapy in primary breast cancer // British Journal of Cancer. 2004;90(12):2338–2343.

Uboha N, Hochster HS. Tas-102: A novel antimetabolite for the 21st century // Future Oncology. 2016;12(2):153–163.

Usuki K, Norberg L, Larsson E et al. Localization of platelet-derived endothelial cell growth factor in human placenta and purification of an alternatively processed form // Molecular Biology of the Cell. 1990;1(8):577–584.

Usuki K, Saras J, Waltenberger J et al. Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity // Biochemical and Biophysical Research Communications. 1992;184(3):1311–1316.

Verri A, Focher F, Duncombe RJ et al. Anti-(herpes simplex virus) activity of 4’-thio-2’-deoxyuridines: A biochemical investigation for viral and cellular target enzymes // Biochemical Journal. 2000;351(2):319–326.

Wadler S, Wersto R, Weinberg V et al. Interaction of Fluorouracil and Interferon in Human Colon Cancer Cell Lines: Cytotoxic and Cytokinetic Effect // Cancer Research. 1990;50):5735–5739.

Walter MR, Cook WJ, Cole LB et al. Three-dimensional Strycture of Thymidine Phosphorylase from Escherichia coli at 2.8 A Resolution* // The Journal of biological chemistry. 1990; 265(23):14016–14022.

Zhu GH, Lenzi M, Schwartz EL. The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells // Oncogene. 2002;21(55):8477–8485.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2021