Genetic Heterogeneity in Pediatric Rhabdomyosarcomas
pdf (Русский)

Keywords

children
rhabdomyosarcoma
classification
molecular genetic heterogeneity

How to Cite

Panferova, A. V., Konovalov, D. M., & Druy, A. E. (2024). Genetic Heterogeneity in Pediatric Rhabdomyosarcomas. Voprosy Onkologii, 70(2), 267–277. https://doi.org/10.37469/0507-3758-2024-70-2-267-277

Abstract

The results of molecular genetic studies have brought us closer to understanding the pathogenesis of rhabdomyosarcoma (RMS), and their incorporation into standard testing has established new diagnostic criteria for RMS. In addition to its important role in diagnosis, genetic testing has become necessary to select the intensity of therapy and assess the prognosis of patients with RMS. The most important diagnostic study is the determination of PAX3/7::FOXO1 fusion genes - markers of alveolar RMS (ARMS) and predictors of poor prognosis, which has become widely used for RMS classification and provides the basis for stratifying patients into a high-risk group. ARMS without identified rearrangements involving the PAX3/7 or FOXO1 genes (including those with non-standard partner genes) is currently considered to be a prognostically favourable type of RMS that shares biological similarities with embryonal RMS (ERMS). The standard diagnosis of these tumours currently includes morphological, immunohistochemical and molecular studies. In many cases, routine hematoxylin and eosin staining and desmin, MyoD1 and myogenin expression patterns are sufficient to both confirm the diagnosis and determine the histological type. Simultaneously, only the determination of the PAX3/7::FOXO1 chimeric proteins allows the unambiguous identification of ARMS, especially in cases with  solid histological variant. The histologically homogeneous group of spindle cell/sclerosing RMS (SCRMS) is characterized by very high biological and clinical heterogeneity due to a large number of pathogenic and prognostically significant genetic variants. Molecular genetic techniques are leading the way in the differential diagnosis of SCRMS.

https://doi.org/10.37469/0507-3758-2024-70-2-267-277
pdf (Русский)

References

Skapek S.X., Ferrari A., Gupta A.A., et al. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019; 5(1): 1.-DOI: https://doi.org/10.1038/s41572-018-0051-2.

Fletcher C.D.E. WHO classification of tumors: soft tissue and bone tumors. 5th ed. Lyon, France: World Health Organization, International Agency for Research in Cancer. 2020.

Leiner J., Le Loarer F. The current landscape of rhabdomyosarcomas: an update. Virchows Arch. 2020; 476(1): 97-108.-DOI: https://doi.org/10.1007/s00428-019-02676-9.

Parham D.M., Barr F.G. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013; 20(6): 387-397.-DOI: https://doi.org/10.1097/PAP.0b013e3182a92d0d.

Rudzinski E.R., Kelsey A., Vokuhl C., et al. Pathology of childhood rhabdomyosarcoma: a consensus opinion document from the Children's Oncology Group, European Pediatric Soft Tissue Sarcoma Study Group, and the Cooperative Weichteilsarkom Studiengruppe. Pediatr Blood Cancer. 2021; 68(3): e28798.-DOI: https://doi.org/10.1002/pbc.28798.

Hibbitts E., Chi Y.Y., Hawkins D.S., et al. Refinement of risk stratification for childhood rhabdomyosarcoma using FOXO1 fusion status in addition to established clinical outcome predictors: a report from the Children's Oncology Group. Cancer Med. 2019; 8(14): 6437-6448.-DOI: https://doi.org/10.1002/cam4.2504.

Skapek S.X., Anderson J., Barr F.G., et al. PAX-FOXO1 fusion status drives unfavorable outcome for children with rhabdomyosarcoma: a Children's Oncology Group report. Pediatr Blood Cancer. 2013; 60(9): 1411-1417.-DOI: https://doi.org/10.1002/pbc.24532.

Williamson D., Missiaglia E., de Reyniès A., et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010; 28(13): 2151-2158.-DOI: https://doi.org/10.1200/JCO.2009.26.3814.

Missiaglia E., Williamson D., Chisholm J., et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol. 2012; 30(14): 1670-1677.-DOI: https://doi.org/10.1200/JCO.2011.38.5591.

Wierdl M., Tsurkan L., Chi L., et al. Targeting ALK in pediatric RMS does not induce antitumor activity in vivo. Cancer Chemother Pharmacol. 2018; 82(2): 251-63.-DOI: https://doi.org/10.1007/s00280-018-3615-7.

Seki M., Nishimura R., Yoshida K., et al. Integrated genetic and epigenetic analysis defines novel molecular subgro s in rhabdomyosarcoma. Nat Commun. 2015; 6: 7557.-DOI: https://doi.org/10.1038/ncomms8557.

Nguyen T.H., Barr F.G. Therapeutic approaches targeting PAX3-FOXO1 and its regulatory and transcriptional pathways in rhabdomyosarcoma. Molecules. 2018; 23(11): E2798.-DOI: https://doi.org/10.3390/molecules23112798.

Sun W., Chatterjee B., Shern J.F., et al. Relationship of DNA methylation to mutational changes and transcriptional organization in fusion-positive and fusion-negative rhabdomyosarcoma. Int J Cancer. 2019; 144(11): 2707-17.-DOI: https://doi.org/10.1002/ijc.32006.

Liu J., Guzman M.A., Pezanowski D., et al. FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol. 2011; 24(10): 1327-35.-DOI: https://doi.org/10.1038/modpathol.2011.98.

Shern J.F., Chen L., Chmielecki J., et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014; 4(2): 216-231.-DOI: https://doi.org/10.1158/2159-8290.CD-13-0639.

Alaggio R., Zhang L., Sung Y.-S., et al. A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: identification of novel and recurrent vgll2-related fusions in infantile cases. Am J Surg Pathol. 2016; 40(2): 224-35.-DOI: https://doi.org/10.1097/PAS.0000000000000538.

Gripp K.W. Tumor predisposition in Costello syndrome. Am J Med Genet C Semin Med Genet. 2005; 137C(1): 72-77.-DOI: https://doi.org/10.1002/ajmg.c.30065.

Shern J.F., Selfe J., Izquierdo E., et al. Genomic classification and clinical outcome in rhabdomyosarcoma: a report from an international consortium. J Clin Oncol. 2021; 39(26): 2859-2871.-DOI: https://doi.org/10.1200/JCO.20.03060.

Qualman S., Lynch J., Bridge J., et al. Prevalence and clinical impact of anaplasia in childhood rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children's Oncology Group. Cancer. 2008; 113(11): 3242-3247.-DOI: https://doi.org/10.1002/cncr.23929.

Bridge J.A., Liu J., Qualman S.J., et al. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer. 2002; 33(3): 310-321.-DOI: https://doi.org/10.1002/gcc.10026.

Dias P., Chen B., Dilday B., et al. Strong immunostaining for myogenin in rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass. Am J Pathol. 2000; 156(2): 399-408.-DOI: https://doi.org/10.1016/S0002-9440(10)64743-8.

Dehner L.P., Jarzembowski J.A., Hill D.A. Embryonal rhabdomyosarcoma of the uterine cervix: a report of 14 cases and a discussion of its unusual clinicopathological associations. Mod Pathol. 2012; 25(4): 602-614.-DOI: https://doi.org/10.1038/modpathol.2011.185.

Schultz K.A.P., Williams G.M., Kamihara J., et al. DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res. 2018; 24: 2251-61.-DOI: https://doi.org/10.1158/1078-0432.CCR-17-3089.

Foulkes W.D., Priest J.R., Duchaine T.F. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer. 2014; 14: 662-72.-DOI: https://doi.org/10.1038/nrc3802.

de Kock L., Rivera B., Revil T., et al. Sequencing of DICER1 in sarcomas identifies biallelic somatic DICER1 mutations in an adult-onset embryonal rhabdomyosarcoma. Br J Cancer. 2017; 116: 1621-6.-DOI: https://doi.org/10.1038/bjc.2017.147.

McCluggage W.G., Apellaniz-Ruiz M., Chong A.L., et al. Embryonal rhabdomyosarcoma of the ovary and fallopian tube rare neoplasms associated with germline and somatic DICER1 mutations. Am J Surg Pathol. 2020; 44: 738-47.-DOI: https://doi.org/10.1097/PAS.0000000000001442.

Chen K.S., Stuart S.H., Stroup E.K., et al. Distinct DICER1 hotspot mutations identify bilateral tumors as separate events. JCO Precis Oncol. 2018; 2: 1-9.-DOI: https://doi.org/10.1200/PO.17.00113.

Apellaniz-Ruiz M., McCluggage W.G., Foulkes W.D. DICER1-associated embryonal rhabdomyosarcoma and adenosarcoma of the gynecologic tract: pathology, molecular genetics, and indications for molecular testing. Genes Chromosom Cancer. 2021; 60(3): 217-233.-DOI: https://doi.org/10.1002/gcc.22913.

Kommoss F.K.F., Stichel D., Mora J., et al. Clinicopathologic and molecular analysis of embryonal rhabdomyosarcoma of the genitourinary tract: evidence for a distinct DICER1-associated subgroup. Mod Path. 2021; 34: 1558-69.-DOI: https://doi.org/10.1038/s41379-021-00804-y.

Sesillo F.B., Fox D., Sacco A. Muscle stem cells give rise to rhabdomyosarcomas in a severe mouse model of Duchenne muscular dystrophy. Cell Rep. 2019; 26: 689-701.e686.-DOI: https://doi.org/10.1016/j.celrep.2018.12.089.

Drummond C.J., Hanna J.A., Garcia M.R., et al. Hedgehog pathway drives fusion-negative rhabdomyosarcoma initiated from non-myogenic endothelial progenitors. Cancer Cell. 2018; 33: 108-24.e105.-DOI: https://doi.org/10.1016/j.ccell.2017.12.001.

Kohsaka S., Shukla N., Ameur N., et al. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet. 2014; 46(6): 595-600.-DOI: https://doi.org/10.1038/ng.2969.

Agaram N.P., LaQuaglia M.P., Alaggio R., et al. MYOD1-mutant spindle cell and sclerosing rhabdomyosarcoma: an aggressive subtype irrespective of age. A reappraisal for molecular classification and risk stratification. Mod Pathol. 2019; 32(1): 27-36.-DOI: https://doi.org/10.1038/s41379-018-0120-9.

Agaram N.P., Zhang L., Sung Y.S., et al. Expanding the spectrum of intraosseous rhabdomyosarcoma: correlation between 2 distinct gene fusions and phenotype. Am J Surg Pathol. 2019; 43(5): 695-702.-DOI: https://doi.org/10.1097/PAS.0000000000001227.

Le Loarer F., Cleven A.H.G., Bouvier C., et al. A subset of epithelioid and spindle cell rhabdomyosarcomas is associated with TFCP2 fusions and common ALK upregulation. Mod Pathol. 2020; 33(3): 404-419.-DOI: https://doi.org/10.1038/s41379-019-0323-8.

Cyrta J., Gauthier A., Karanian M., et al. Infantile rhabdomyosarcomas with vgll2 rearrangement are not always an indolent disease: a study of 4 aggressive cases with clinical, pathologic, molecular, and radiologic findings. Am J Surg Pathol. 2021; 45(6): 854-867.-DOI: https://doi.org/10.1097/PAS.0000000000001702.

Mosquera J.M., Sboner A., Zhang L., et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma genes chromosomes. Cancer. 2013; 52(6): 538-50.-DOI: https://doi.org/10.1002/gcc.22050.

Xu J., O’Malley B.W. Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev Endocr Metab Disord. 2002; 3: 185-192.-DOI: https://doi.org/10.1023/a:1020016208071.

Xing D., Meyer C.F., Gross J.M., et al. Uterine MEIS1::NCOA2 fusion sarcoma with lung metastasis: a case report and review of the literature. Int J Gynecol Pathol. 2023.-DOI: https://doi.org/10.1097/PGP.0000000000000951.

Kao Y.-C., Bennett J.A., Suurmeijer A.J.H., et al. Recurrent MEIS1-NCOA2/1 fusions in a subset of low-grade spindle cell sarcomas frequently involving the genitourinary and gynecologic tracts. Mod Pathol. 2021; 34(6): 1203-1212.-DOI: https://doi.org/10.1038/s41379-021-00744-7.

Jour G., Serrano J., Koelsche C., et al. Primary CNS alveolar rhabdomyosarcoma: importance of epigenetic and transcriptomic assays for accurate diagnosis. J Neuropathol Exp Neurol. 2019; 78(11): 1073-1075.-DOI: https://doi.org/10.1093/jnen/nlz083.

Tan G.Z.L., Saminathan S.N., Chang K.T.E., et al. A rare case of congenital spindle cell rhabdomyosarcoma with TEAD1-NCOA2 fusion: A subset of spindle cell rhabdomyosarcoma with indolent behavior. Pathol Int. 2020; 70(4): 234-236.-DOI: https://doi.org/10.1111/pin.12908.

Rudzinski E.R., Anderson J.R., Lyden E.R., et al. Myogenin, AP2beta, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the soft tissue sarcoma committee of the Children's Oncology Group. Am J Surg Pathol. 2014; 38(5): 654-659.-DOI: https://doi.org/10.1097/PAS.0000000000000195.

Elnour I.E., Dong D., Wang X., et al. Bta-miR-885 promotes proliferation and inhibits differentiation of myoblasts by targeting MyoD1. J Cell Physiol. 2020; 235: 6625-6636.-DOI: https://doi.org/10.1002/jcp.29559.

Rekhi B., Upadhyay P., Ramteke M.P., et al. MYOD1 (L122R) mutations are associated with spindle cell and sclerosing rhabdomyosarcomas with aggressive clinical outcomes. Mod Pathol. 2016; 29: 1532-1540.-DOI: https://doi.org/10.1038/modpathol.2016.144.

Owosho A.A., Huang S.-C., Chen S., et al. A clinicopathologic study of head and neck rhabdomyosarcomas showing FOXO1 fusion-positive alveolar and MYOD1-mutant sclerosing are associated with unfavorable outcome. Oral Oncol. 2016; 61: 89-97.-DOI: https://doi.org/10.1016/j.oraloncology.2016.08.017.

Chrisinger J.S.A., Wehrli B., Dickson B.C., et al. Epithelioid and spindle cell rhabdomyosarcoma with FUS-TFCP2 or EWSR1-TFCP2 fusion: report of two cases. Virchows Arch. 2020; 477(5): 725-732.-DOI: https://doi.org/10.1007/s00428-020-02870-0.

Willoughby J.L.S., George K., Roberto M.P., et al. Targeting the oncogene LSF with either the small molecule inhibitor FQI1 or siRNA causes mitotic delays with unaligned chromosomes, resulting in cell death or senescence BMC Cancer. 2020; 20: 552.-DOI: https://doi.org/10.1186/s12885-020-07039-1.

Butel T., Karanian M., Pierron G., et al. Integrative clinical and biopathology analyses to understand the clinical heterogeneity of infantile rhabdomyosarcoma: A report from the French MMT committee. Cancer Med. 2020; 9(8): 2698-2709.-DOI: https://doi.org/10.1002/cam4.2713.

Kao Y.‐C., Fletcher C.D.M., Alaggio R., et al. Recurrent BRAF gene fusions in a subset of pediatric spindle cell sarcomas: expanding the genetic spectrum of tumors with overlapping features with infantile fibrosarcoma. Am J Surg Pathol. 2018; 42(1): 28‐38.-DOI: https://doi.org/10.1097/PAS.0000000000000938.

Suurmeijer A.J.H., Dickson B.C., Swanson D., et al. A novel group of spindle cell tumors defined by S100 and CD34 co‐expression shows recurrent fusions involving RAF1, BRAF, and NTRK1/2 genes. Genes Chromosomes Cancer. 2018; 57(12): 611‐621.-DOI: https://doi.org/10.1002/gcc.22671.

Al‐Rohil R.N., Tarasen A.J., Carlson J.A., et al. Evaluation of 122 advanced‐stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies. Cancer. 2016; 122(2): 249‐257.-DOI: https://doi.org/10.1002/cncr.29738.

Doebele R.C., Davis L.E., Vaishnavi A., et al. An oncogenic NTRK fusion in a patient with soft‐tissue sarcoma with response to the tropomyosin‐related kinase inhibitor LOXO‐101. Cancer Discov.-2015; 5(10): 1049‐1057.-DOI: https://doi.org/10.1158/2159-8290.CD-15-0443.

Amatu A., Sartore‐Bianchi A., Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. 2016; 1(2): e000023.-DOI: https://doi.org/10.1136/esmoopen-2015-000023.

Fan R., Parham D.M., Wang L.L. An integrative morphologic and molecular approach for diagnosis and subclassification of rhabdomyosarcoma. Arch Pathol Lab Med. 2022; 146(8): 953-959.-DOI: https://doi.org/10.5858/arpa.2021-0183-RA.

Grass B., Wachtel M., Behnke S., et al. Immunohistochemical detection of EGFR, fibrillin-2, P-cadherin and AP2beta as biomarkers for rhabdomyosarcoma diagnostics. Histopathology. 2009; 54(7): 873-879.-DOI: https://doi.org/10.1111/j.1365-2559.2009.03303.x.

Forgo E., Hornick J.L., Charville G.W. MUC4 is expressed in alveolar rhabdomyosarcoma. Histopathology. 2021; 78(6): 905-908.-DOI: https://doi.org/10.1111/his.14321.

Tarakanova A.V., Sharlay A.S., Konovalov D.M. Alveolar rhabdomyosarcoma: novel surrogate markers associated with oncogenic translocation. Archive of Pathology = Arkhiv patologii. 2023; 85(1): 10-15.-DOI: https://doi.org/10.17116/patol20238501110.

Kaleta M., Wakulińska A., Karkucińska-Więckowska A., et al. OLIG2 is a novel immunohistochemical marker associated with the presence of PAX3/7-FOXO1 translocation in rhabdomyosarcomas. Diagn Pathol. 2019; 14(1): 103.-DOI: https://doi.org/10.1186/s13000-019-0883-4.

Raghavan S.S., Mooney K.L., Folpe A.L., et al. OLIG2 is a marker of the fusion protein-driven neurodevelopmental transcriptional signature in alveolar rhabdomyosarcoma. Hum Pathol. 2019; 91: 77-85.-DOI: https://doi.org/10.1016/j.humpath.2019.07.003.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024