Immune checkpoints PD-1/PD-L1 and TIM-3/GAL-9 and prospects for their simultaneous inhibition
pdf (Русский)

Keywords

review
immunotherapy
immune checkpoints
signaling pathways

How to Cite

Kipkeeva, F. M., Mansorunov, D. Z., Muzaffarova, T. A., Apanovich, N. V., Nikulin, M. P., & Alimov, A. A. (2024). Immune checkpoints PD-1/PD-L1 and TIM-3/GAL-9 and prospects for their simultaneous inhibition. Voprosy Onkologii, 70(2), 202–211. https://doi.org/10.37469/0507-3758-2024-70-2-202-211

Abstract

Currently, immune checkpoints inhibitors (ICIs) are widely used in clinical practice. However, for a significant group of patients, monotherapy with an ICI is not effective. One of the reasons for this lies in the complex mechanism of interaction between receptors and ligands of different ICs, which are simultaneously present on the cell surface. Simultaneous inhibition of various ICs is considered as one of possible solutions to this problem. Clinical trials of ICI combinations are currently underway. Some of these combinations are approved for use in clinical practice. The signaling pathways associated with ICs are being actively studied. Targeting of these pathways together with ICIs is a new therapy strategy. This review summarizes data on PD-1/PD-L1 and TIM-3/Gal-9 immune checkpoints as a promising targets of ICI combination. The signaling pathways associated with the molecules of these ICs have also been characterized. The prospect of therapies based on simultaneous blocking of PD-1, PD-L1, TIM-3, Gal-9 molecules and their signalling pathways were evaluated.

https://doi.org/10.37469/0507-3758-2024-70-2-202-211
pdf (Русский)

References

Wojtukiewicz M.Z., Rek M.M., Karpowicz K., et al. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021; 40: 949-982.-DOI: https://doi.org/10.1007/s10555-021-09976-0. URL: https://link.springer.com/article/10.1007/s10555-021-09976-0.

Sun L., Zhang L., Yu J., et al. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep. 2020; 10(1): 2083.-DOI: https://doi.org/10.1038/s41598-020-58674-4. URL: https://www.nature.com/articles/s41598-020-58674-4.

Abbas W., Rao R.R., Popli S. Hyperprogression after immunotherapy. South Asian J Cancer. 2019; 08(04): 244-246.-DOI: https://doi.org/10.4103/sajc.sajc_389_18. URL: https://www.thieme-connect.de/products/ejournals/abstract/10.4103/sajc.sajc_389_18.

Zhao L., Hu J., Hu D., et al. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother. 2022; 150: 112949.-DOI: https://doi.org/10.1016/j.biopha.2022.112949. URL: https://www.sciencedirect.com/science/article/pii/S0753332222003389?via%3Dihub.

Koyama S., Akbay E.A., Li Y.Y., et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016; 7(1): 10501.-DOI: https://doi.org/10.1038/ncomms10501. URL: https://www.nature.com/articles/ncomms10501.

Walsh R.J., Sundar R., Lim J.S.J. Immune checkpoint inhibitor combinations—current and emerging strategies. Br J Cancer. 2023; 128(8): 1415-1417.-DOI: https://doi.org/1038/s41416-023-02181-6. URL: https://www.nature.com/articles/s41416-023-02181-6.

Liu J., Zhang S., Hu Y., et al. Targeting PD-1 and Tim-3 pathways to reverse CD8 T-cell exhaustion and enhance ex vivo T-cell responses to autologous dendritic/tumor vaccines. J Immunother. 2016; 39(4): 171-180.-DOI: https://doi.org/10.1097/CJI.0000000000000122. URL: https://journals.lww.com/immunotherapy-journal/fulltext/2016/05000/targeting_pd_1_and_tim_3_pathways_to_reverse_cd8.3.aspx.

Fourcade J., Sun Z., Benallaoua M., et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010; 207(10): 2175-2186.-DOI: https://doi.org/10.1084/jem.20100637. URL: https://rupress.org/jem/article/207/10/2175/40768/Upregulation-of-Tim-3-and-PD-1-expression-is.

Lu X., Yang L., Yao D., et al. Tumor antigen-specific CD8+ T cells are negatively regulated by PD-1 and Tim-3 in human gastric cancer. Cell Immunol. 2017; 313: 43-51.-DOI: https://doi.org/10.1016/j.cellimm.2017.01.001. URL: https://www.sciencedirect.com/science/article/pii/S0008874917300011?via%3Dihub.

Li X., Wang R., Fan P., et al. A comprehensive analysis of key immune checkpoint receptors on tumor-infiltrating t cells from multiple types of cancer. Front Oncol. 2019; 9.-DOI: https://doi.org/10.3389/fonc.2019.01066. URL: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2019.01066/full.

Li E., Xu J., Chen Q., et al. Galectin-9 and PD-L1 antibody blockade combination therapy inhibits tumour progression in pancreatic cancer. Immunotherapy. 2023; 15(3): 135-147.-DOI: https://doi.org/10.2217/imt-2021-0075. URL: https://www.futuremedicine.com/doi/10.2217/imt-2021-0075?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed&.

Acoba J.D., Rho Y., Fukaya E. Phase II study of cobolimab in combination with dostarlimab for the treatment of advanced hepatocellular carcinoma. J Clin Oncol. 2023; 41(4_suppl): 580–580.-DOI: https://doi.org/10.1200/jco.2023.41.4_suppl.580. URL: https://ascopubs.org/doi/abs/10.1200/JCO.2023.41.4_suppl.580?role=tab.

Kelly Z., Najjar Y., Zarour H., et al. Randomized phase II neoadjuvant study: PD-1 inhibitor TSR-042 vs. combination PD-1 inhibitor TSR-042 and Tim-3 inhibitor TSR022 in borderline resectable stage III or oligometastatic stage IV melanoma. J Immunother Cancer. 2019; 7(1_suppl): 282.-DOI: https://doi.org/10.1186/s40425-019-0763-1. URL: https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0763-1.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier: NCT03708328. Hoffmann-La Roche. A Phase 1 Study to Evaluate Safety, Pharmacokinetics, and Preliminary Anti-Tumor Activity of RO7121661, a PD-1/TIM-3 Bispecific Antibody, in Patients with Advanced and/or Metastatic Solid Tumors. 2024. (22 Mar 2024). URL: https://clinicaltrials.gov/study/NCT03708328.

Besse B., Italiano A., Cousin S., et al. Safety and preliminary efficacy of AZD7789, a bispecific antibody targeting PD-1 and TIM-3, in patients (pts) with stage IIIB–IV non-small-cell lung cancer (NSCLC) with previous anti-PD-(L)1 therapy. Ann Oncol. 2023; 34: S755.-DOI: https://doi.org/10.1016/j.annonc.2023.09.2347. URL: https://linkinghub.elsevier.com/retrieve/pii/S0923753423031848.

Hamid O., Gutierrez M., Mehmi I., et al. A phase 1/2 study of retifanlimab (INCMGA00012, Anti–PD-1), INCAGN02385 (Anti–LAG-3), and INCAGN02390 (Anti–TIM-3) combination therapy in patients (Pts) with advanced solid tumors. J Clin Oncol. 2023; 41(16_suppl): 2599-2599.-DOI: https://doi.org/10.1200/jco.2023.41.16_suppl.2599. URL: https://ascopubs.org/doi/abs/10.1200/JCO.2023.41.16_suppl.2599.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier: NCT03961971. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. A phase I trial of anti-Tim-3 in combination with anti-PD-1 and SRS in recurrent GBM. 2024 (22 Mar 2024). URL: https://clinicaltrials.gov/ct2/show/NCT03961971.

Lakhani N., Spreafico A., Tolcher A.W., et al. A phase I studies of Sym021, an anti-PD-1 antibody, alone and in combination with Sym022 (anti-LAG-3) or Sym023 (anti-TIM-3). Ann Oncol. 2020; 31: S704.-DOI: https://doi.org/10.1016/j.annonc.2020.08.1139. URL: https://www.annalsofoncology.org/article/S0923-7534(20)41135-4/fulltext.

Desai J., Meniawy T., Beagle B., et al. Bgb-A425, an investigational anti-TIM-3 monoclonal antibody, in combination with tislelizumab, an anti-PD-1 monoclonal antibody, in patients with advanced solid tumors: A phase I/II trial in progress. J Clin Oncol. 2020; 38(15_suppl): TPS3146-TPS3146.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier: NCT04641871. Symphogen A/S. A Phase Ib Trial of Sym021 in combination with either Sym022 or Sym023 or Sym023 and irinotecan in patients with recurrent advanced selected solid tumor malignancies. 2024. (22 Mar 2024). URL: https://clinicaltrials.gov/study/NCT04641871.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier: NCT04785820. Hoffmann-La Roche. A Phase II Study of Lomvastomig (RO7121661) and Tobemstomig (RO7247669) Compared With Nivolumab in Participants With Advanced or Metastatic Squamous Cell Carcinoma of the Esophagus. 2024. (22 Mar 2024) URL: https://clinicaltrials.gov/study/NCT04785820.

Falchook G.S., Ribas A., Davar D., et al. Phase 1 trial of TIM-3 inhibitor cobolimab monotherapy and in combination with PD-1 inhibitors nivolumab or dostarlimab (AMBER). J Clin Oncol. 2022; 40(16_suppl): 2504-2504.-DOI: https://doi.org/10.1200/jco.2022.40.16_suppl.2504. URL: https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.2504.

Curigliano G., Gelderblom H., Mach N., et al. Phase I/Ib clinical trial of sabatolimab, an anti–TIM-3 antibody, alone and in combination with spartalizumab, an anti–PD-1 antibody, in advanced solid tumors. Clin Cancer Res. 2021; 27(13): 3620-3629.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-4746. URL: https://aacrjournals.org/clincancerres/article/27/13/3620/671520/Phase-I-Ib-Clinical-Trial-of-Sabatolimab-an-Anti.

Hellmann M.D., Bivi N., Calderon B., et al. Safety and immunogenicity of LY3415244, a bispecific antibody against TIM-3 and PD-L1, in patients with advanced solid tumors. Clin Cancer Res. 2021; 27(10): 2773-2781.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-3716. URL: https://aacrjournals.org/clincancerres/article/27/10/2773/665643/Safety-and-Immunogenicity-of-LY3415244-a.

Harding J.J., Moreno V., Bang Y.J., et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: A phase Ia/b study of LY3321367 with or without an Anti-PD-L1 antibody. Clin Cancer Res. 2021; 27(8): 2168-2178.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-4405. URL: https://aacrjournals.org/clincancerres/article/27/8/2168/672067/Blocking-TIM-3-in-Treatment-refractory-Advanced.

Hollebecque A., Chung H.C., Miguel M.J.D., et al. Safety and Antitumor Activity of a-PD-L1 Antibody as Monotherapy or in Combination witha-TIM-3 Antibody in Patients with Microsatellite Instability-High/Mismatch Repair-Deficient Tumors. Clin Cancer Res. 2021; 27(23): 6393-6404.-DOI: https://doi.org/10.1158/1078-0432.CCR-21-0261. URL: https://aacrjournals.org/clincancerres/article/27/23/6393/675031/Safety-and-Antitumor-Activity-of-PD-L1-Antibody-as.

Filipovic A., Wainber Z., Wang J., et al. Phase ½ study of an anti-galectin-9 antibody, LYT-200, in patients with metastatic solid tumors. J Immunother Cancer. 2021; 9: A512-A512.-DOI: https://doi.org/10.1136/jitc-2021-SITC2021.482. URL: https://jitc.bmj.com/lookup/doi/10.1136/jitc-2021-SITC2021.482.

Sharpe A.H., Pauken K.E. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018; 18(3): 153-167.-DOI: https://doi.org/10.1038/nri.2017.108. URL: https://www.nature.com/articles/nri.2017.108.

Parry R.V., Chemnitz J.M., Frauwirth K.A., et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005; 25(21): 9543-9553.-DOI: https://doi.org/10.1128/MCB.25.21.9543-9553.2005. URL: https://www.tandfonline.com/doi/full/10.1128/MCB.25.21.9543-9553.2005.

Bardhan K., Anagnostou T., Boussiotis V.A. The PD1: PD-L1/2 pathway from discovery to clinical implementation. Front Immunol. 2016; 7.-DOI: https://doi.org/10.3389/fimmu.2016.00550. URL: https://www.frontiersin.org/articles/10.3389/fimmu.2016.00550/full.

Acharya N., Sabatos-Peyton C., Anderson A.C. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020; 8(1): e000911.-DOI: https://doi.org/10.1136/jitc-2020-000911. URL: https://jitc.bmj.com/lookup/pmidlookup?view=long&pmid=32601081.

Wolf Y., Anderson A.C., Kuchroo V.K. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020; 20(3): 173-185.-DOI: https://doi.org/10.1038/s41577-019-0224-6. URL: https://www.nature.com/articles/s41577-019-0224-6.

Chou F.-C., Chen H.-Y., Kuo C.-C., Sytwu H.-K. Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci. 2018; 19(2): 430.-DOI: https://doi.org/10.3390/ijms19020430. URL: https://www.mdpi.com/1422-0067/19/2/430.

Lv Y., Ma X., Ma Y., et al. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes Dis. 2023; 10(6): 2366-2382.-DOI: https://doi.org/10.1016/j.gendis.2022.05.020. URL: https://www.sciencedirect.com/science/article/pii/S2352304222001556.

Mathieu M., Cotta‐Grand N., Daudelin J., et al. Notch signaling regulates PD‐1 expression during CD8 + T‐cell activation. Immunol Cell Biol. 2013;91(1):82–88.-DOI: https://doi.org/10.1038/icb.2012.53. URL: https://onlinelibrary.wiley.com/doi/10.1038/icb.2012.53.

Yu W., Wang Y., Guo P. Notch signaling pathway dampens tumor-infiltrating CD8+ T cells activity in patients with colorectal carcinoma. Biomed Pharmacother. 2018; 97: 535-542.-DOI: https://doi.org/10.1016/j.biopha.2017.10.143. URL: https://www.sciencedirect.com/science/article/pii/S0753332217345808?via%3Dihub.

Mao L., Zhao Z., Yu G., et al. γ‐Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int J Cancer. 2018; 142(5): 999-1009.-DOI: https://doi.org/10.1002/ijc.31115. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31115.

Salmaninejad A., Valilou S.F., Shabgah A.G., et al. PD‐1/PD‐L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019; 234(10): 16824-16837.-DOI: https://doi.org/10.1002/jcp.28358. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcp.28358.

Banerjee H., Nieves-Rosado H., Kulkarni A., et al. Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Rep. 2021; 36(11): 109699.-DOI: https://doi.org/10.1016/j.celrep.2021.109699. URL: https://www.sciencedirect.com/science/article/pii/S2211124721011463?via%3Dihub.

Lipp J.J., Wang L., Yang H., et al. Functional and molecular characterization of PD1 + tumor-infiltrating lymphocytes from lung cancer patients. Oncoimmunology. 2022; 11(1).-DOI: https://doi.org/10.1080/2162402X.2021.2019466. URL: https://www.tandfonline.com/doi/full/10.1080/2162402X.2021.2019466.

Taylor A., Harker J.A., Chanthong K., et al. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8+ cytolytic T cell responses. Immunity. 2016; 44(2): 274-286.-DOI: https://doi.org/10.1016/j.immuni.2016.01.018. URL: https://www.sciencedirect.com/science/article/pii/S107476131630005X?via%3Dihub.

Tomkowicz B., Walsh E., Cotty A., et al. TIM-3 Suppresses anti-CD3/CD28-induced TCR activation and IL-2 expression through the NFAT signaling pathway. PLoS One. 2015; 10(10): e0140694.-DOI: https://doi.org/10.1371/journal.pone.0140694. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140694.

Lee M.J., Woo M.-Y., Chwae Y.-J., et al. Down-regulation of interleukin-2 production by CD4+ T cells expressing TIM-3 through suppression of NFAT dephosphorylation and AP-1 transcription. Immunobiology. 2012; 217(10): 986-995.-DOI: https://doi.org/10.1016/j.imbio.2012.01.012. URL: https://www.sciencedirect.com/science/article/pii/S0171298512000162?via%3Dihub.

Sen T., Rodriguez B.L., Chen L., et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 2019; 9(5): 646-661.-DOI: https://doi.org/10.1158/2159-8290.CD-18-1020. URL: https://aacrjournals.org/cancerdiscovery/article/9/5/646/42069/Targeting-DNA-Damage-Response-Promotes-Antitumor.

Fu J., Kanne D.B., Leong M., et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015; 7(283).-DOI: https://doi.org/10.1126/scitranslmed.aaa4306. URL: https://www.science.org/doi/10.1126/scitranslmed.aaa4306?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.

Hu M., Zhou M., Bao X., et al. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. J Clin Invest. 2021; 131(3).-DOI: https://doi.org/10.1172/JCI139333. URL: https://www.jci.org/articles/view/139333.

Zheng S., Song J., Linghu D., et al. Galectin-9 blockade synergizes with ATM inhibition to induce potent anti-tumor immunity. Int J Biol Sci. 2023; 19(3): 981-993.-DOI: https://doi.org/10.7150/ijbs.79852. URL: https://www.ijbs.com/v19p0981.htm.

Wang H., Hu S., Chen X., et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci. 2017; 114: 1637-1642.-DOI: https://doi.org/10.1073/pnas.1621363114. URL: https://www.pnas.org/doi/10.1073/pnas.1621363114.

Garcia-Diaz A., Shin D.S., Moreno B.H., et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017; 19(6): 1189-1201.-DOI: https://doi.org/10.1016/j.celrep.2017.04.031. URL: https://www.sciencedirect.com/science/article/pii/S2211124717305259?via%3Dihub.

Li P., Huang T., Zou Q., et al. FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. J Immunol. 2019; 202(10): 3065-3075.-DOI: https://doi.org/10.4049/jimmunol.1801199. URL: https://journals.aai.org/jimmunol/article/202/10/3065/845/FGFR2-Promotes-Expression-of-PD-L1-in-Colorectal.

Sasidharan Nair V., Toor S.M., Ali B.R., Elkord E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin Ther Targets. 2018; 22(6): 547-557.-DOI: https://doi.org/10.1080/14728222.2018.1471137. URL: https://www.tandfonline.com/doi/full/10.1080/14728222.2018.1471137.

Atsaves V., Tsesmetzis N., Chioureas D., et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia. 2017; 31(7): 1633-1637.-DOI: https://doi.org/10.1038/leu.2017.103. URL: https://www.nature.com/articles/leu2017103.

Jiang X., Zhou J., Giobbie-Hurder A., et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res. 2013; 19(3): 598-609.-DOI: https://doi.org/10.1158/1078-0432.CCR-12-2731. URL: https://aacrjournals.org/clincancerres/article/19/3/598/208668/The-Activation-of-MAPK-in-Melanoma-Cells-Resistant.

Parsa A.T., Waldron J.S., Panner A., et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007; 13(1): 84-88.-DOI: https://doi.org/10.1038/nm1517. URL: https://www.nature.com/articles/nm1517.

Chen N., Fang W., Zhan J., et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015; 10(6): 910-923.-DOI: https://doi.org/10.1097/JTO.0000000000000500. URL: https://www.sciencedirect.com/science/article/pii/S1556086415330422?via%3Dihub.

Atefi M., Avramis E., Lassen A., et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res. 2014; 20(13): 3446-3457.-DOI: https://doi.org/10.1158/1078-0432.CCR-13-2797. URL: https://aacrjournals.org/clincancerres/article/20/13/3446/78466/Effects-of-MAPK-and-PI3K-Pathways-on-PD-L1.

Antonangeli F., Natalini A., Garassino M.C., et al. Regulation of PD-L1 expression by NF-κB in cancer. Front Immunol. 2020; 11.-DOI: https://doi.org/10.3389/fimmu.2020.584626. URL: https://www.frontiersin.org/articles/10.3389/fimmu.2020.584626/full.

Gowrishankar K., Gunatilake D., Gallagher S.J., et al. Inducible but not constitutive expression of PD-L1 in human melanoma cells is dependent on activation of NF-κB. PLoS One. 2015; 10(4): e0123410.-DOI: https://doi.org/10.1371/journal.pone.0123410. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123410.

Maeda T., Hiraki M., Jin C., et al. MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer Res. 2018; 78(1): 205-215.-DOI: https://doi.org/10.1158/0008-5472.CAN-17-1636. URL: https://aacrjournals.org/cancerres/article/78/1/205/625019/MUC1-C-Induces-PD-L1-and-Immune-Evasion-in-Triple.

Bouillez A., Rajabi H., Jin C., et al. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene. 2017; 36(28): 4037-4046.-DOI: https://doi.org/10.1038/onc.2017.47. URL: https://www.nature.com/articles/onc201747.

Du L., Lee J.-H., Jiang H., et al. β-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med. 2020; 217(11).-DOI: https://doi.org/10.1084/jem.20191115. URL: https://rupress.org/jem/article/217/11/e20191115/152055/Catenin-induces-transcriptional-expression-of-PD.

Castagnoli L., Cancila V., Cordoba-Romero S.L., et al. WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene. 2019; 38(21): 4047-4060.-DOI: https://doi.org/10.1038/s41388-019-0700-2. URL: https://www.nature.com/articles/s41388-019-0700-2.

Han Y. Analysis of the role of the Hippo pathway in cancer. J Transl Med. 2019; 17: 116. -DOI: https://doi.org/10.1186/s12967-019-1869-4. URL: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-1869-4.

Hsu P.-C., Jablons D.M., Yang C.-T., You L. Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci. 2019; 20(15): 3821.-DOI: https://doi.org/10.3390/ijms20153821. URL: https://www.mdpi.com/1422-0067/20/15/3821.

Lu M., Wang K., Ji W., et al. FGFR1 promotes tumor immune evasion via YAP-mediated PD-L1 expression upregulation in lung squamous cell carcinoma. Cell Immunol. 2022; 379: 104577.-DOI: https://doi.org/10.1016/j.cellimm.2022.104577. URL: https://www.sciencedirect.com/science/article/pii/S0008874922001022?via%3Dihub.

Yang R., Sun L., Li C.-F., et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021; 12(1): 832.-DOI: https://doi.org/10.1038/s41467-021-21099-2. URL: https://www.nature.com/articles/s41467-021-21099-2.

Ju M.-H., Byun K.-D., Park E.-H., et al. Association of galectin 9 expression with immune cell infiltration, programmed cell death ligand-1 expression, and patient’s clinical outcome in triple-negative breast cancer. Biomedicines. 2021; 9(10): 1383.-DOI: https://doi.org/10.3390/biomedicines9101383. URL: https://www.mdpi.com/2227-9059/9/10/1383.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024