Иммунные контрольные точки PD-1/PD-L1 и TIM-3/Gal-9 и перспективы их совместного ингибирования
Загрузок: 99
Просмотров: 297
pdf

Ключевые слова

обзор
иммунотерапия
иммунные контрольные точки
сигнальные пути

Как цитировать

Кипкеева , Ф. М., Мансорунов, Д. Ж., Музаффарова, Т. А., Апанович, Н. В., Никулин, М. П., & Алимов, А. А. (2024). Иммунные контрольные точки PD-1/PD-L1 и TIM-3/Gal-9 и перспективы их совместного ингибирования. Вопросы онкологии, 70(2), 202–211. https://doi.org/10.37469/0507-3758-2024-70-2-202-211

Аннотация

В настоящее время широкое распространение в клинической практике получили препараты, нацеленные на ингибирование иммунных контрольных точек (ИКТ). Однако для значительной группы больных монотерапия ингибитором ИКТ не является эффективной. Одна из причин этого кроется в сложном механизме взаимодействия между рядом белков, являющихся рецепторами и лигандами разных ИКТ, которые одновременно присутствуют на поверхности клетки. Одно из решений этой проблемы — совместное подавление экспрессии нескольких молекул ИКТ. В настоящее время проходят клинические исследования, в которых тестируются комбинации ингибиторов ИКТ. Некоторые из таких комбинаций одобрены для использования в клинической практике. Также в последнее время активно изучаются сигнальные пути, вовлеченные в формирование иммунного ответа в результате трансдукции сигнала через белки ИКТ. Таргетное воздействие на ключевые молекулы этих путей совместно с ингибированием контрольных точек рассматривается в качестве новой стратегии иммунотерапии. В обзоре рассмотрены перспективные мишени иммунотаргетной терапии — PD-1/PD-L1 и TIM-3/Gal-9. Охарактеризованы сигнальные пути, ассоциированные с молекулами этих ИКТ. Проведена оценка потенциальных подходов, основанных на одновременном воздействии на молекулы PD-1, PD-L1, TIM-3, Gal-9 и их сигнальные пути.

https://doi.org/10.37469/0507-3758-2024-70-2-202-211
Загрузок: 99
Просмотров: 297
pdf

Библиографические ссылки

Wojtukiewicz M.Z., Rek M.M., Karpowicz K., et al. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021; 40: 949-982.-DOI: https://doi.org/10.1007/s10555-021-09976-0. URL: https://link.springer.com/article/10.1007/s10555-021-09976-0.

Sun L., Zhang L., Yu J., et al. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep. 2020; 10(1): 2083.-DOI: https://doi.org/10.1038/s41598-020-58674-4. URL: https://www.nature.com/articles/s41598-020-58674-4.

Abbas W., Rao R.R., Popli S. Hyperprogression after immunotherapy. South Asian J Cancer. 2019; 08(04): 244-246.-DOI: https://doi.org/10.4103/sajc.sajc_389_18. URL: https://www.thieme-connect.de/products/ejournals/abstract/10.4103/sajc.sajc_389_18.

Zhao L., Hu J., Hu D., et al. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother. 2022; 150: 112949.-DOI: https://doi.org/10.1016/j.biopha.2022.112949. URL: https://www.sciencedirect.com/science/article/pii/S0753332222003389?via%3Dihub.

Koyama S., Akbay E.A., Li Y.Y., et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016; 7(1): 10501.-DOI: https://doi.org/10.1038/ncomms10501. URL: https://www.nature.com/articles/ncomms10501.

Walsh R.J., Sundar R., Lim J.S.J. Immune checkpoint inhibitor combinations—current and emerging strategies. Br J Cancer. 2023; 128(8): 1415-1417.-DOI: https://doi.org/1038/s41416-023-02181-6. URL: https://www.nature.com/articles/s41416-023-02181-6.

Liu J., Zhang S., Hu Y., et al. Targeting PD-1 and Tim-3 pathways to reverse CD8 T-cell exhaustion and enhance ex vivo T-cell responses to autologous dendritic/tumor vaccines. J Immunother. 2016; 39(4): 171-180.-DOI: https://doi.org/10.1097/CJI.0000000000000122. URL: https://journals.lww.com/immunotherapy-journal/fulltext/2016/05000/targeting_pd_1_and_tim_3_pathways_to_reverse_cd8.3.aspx.

Fourcade J., Sun Z., Benallaoua M., et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010; 207(10): 2175-2186.-DOI: https://doi.org/10.1084/jem.20100637. URL: https://rupress.org/jem/article/207/10/2175/40768/Upregulation-of-Tim-3-and-PD-1-expression-is.

Lu X., Yang L., Yao D., et al. Tumor antigen-specific CD8+ T cells are negatively regulated by PD-1 and Tim-3 in human gastric cancer. Cell Immunol. 2017; 313: 43-51.-DOI: https://doi.org/10.1016/j.cellimm.2017.01.001. URL: https://www.sciencedirect.com/science/article/pii/S0008874917300011?via%3Dihub.

Li X., Wang R., Fan P., et al. A comprehensive analysis of key immune checkpoint receptors on tumor-infiltrating t cells from multiple types of cancer. Front Oncol. 2019; 9.-DOI: https://doi.org/10.3389/fonc.2019.01066. URL: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2019.01066/full.

Li E., Xu J., Chen Q., et al. Galectin-9 and PD-L1 antibody blockade combination therapy inhibits tumour progression in pancreatic cancer. Immunotherapy. 2023; 15(3): 135-147.-DOI: https://doi.org/10.2217/imt-2021-0075. URL: https://www.futuremedicine.com/doi/10.2217/imt-2021-0075?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed&.

Acoba J.D., Rho Y., Fukaya E. Phase II study of cobolimab in combination with dostarlimab for the treatment of advanced hepatocellular carcinoma. J Clin Oncol. 2023; 41(4_suppl): 580–580.-DOI: https://doi.org/10.1200/jco.2023.41.4_suppl.580. URL: https://ascopubs.org/doi/abs/10.1200/JCO.2023.41.4_suppl.580?role=tab.

Kelly Z., Najjar Y., Zarour H., et al. Randomized phase II neoadjuvant study: PD-1 inhibitor TSR-042 vs. combination PD-1 inhibitor TSR-042 and Tim-3 inhibitor TSR022 in borderline resectable stage III or oligometastatic stage IV melanoma. J Immunother Cancer. 2019; 7(1_suppl): 282.-DOI: https://doi.org/10.1186/s40425-019-0763-1. URL: https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0763-1.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier: NCT03708328. Hoffmann-La Roche. A Phase 1 Study to Evaluate Safety, Pharmacokinetics, and Preliminary Anti-Tumor Activity of RO7121661, a PD-1/TIM-3 Bispecific Antibody, in Patients with Advanced and/or Metastatic Solid Tumors. 2024. (22 Mar 2024). URL: https://clinicaltrials.gov/study/NCT03708328.

Besse B., Italiano A., Cousin S., et al. Safety and preliminary efficacy of AZD7789, a bispecific antibody targeting PD-1 and TIM-3, in patients (pts) with stage IIIB–IV non-small-cell lung cancer (NSCLC) with previous anti-PD-(L)1 therapy. Ann Oncol. 2023; 34: S755.-DOI: https://doi.org/10.1016/j.annonc.2023.09.2347. URL: https://linkinghub.elsevier.com/retrieve/pii/S0923753423031848.

Hamid O., Gutierrez M., Mehmi I., et al. A phase 1/2 study of retifanlimab (INCMGA00012, Anti–PD-1), INCAGN02385 (Anti–LAG-3), and INCAGN02390 (Anti–TIM-3) combination therapy in patients (Pts) with advanced solid tumors. J Clin Oncol. 2023; 41(16_suppl): 2599-2599.-DOI: https://doi.org/10.1200/jco.2023.41.16_suppl.2599. URL: https://ascopubs.org/doi/abs/10.1200/JCO.2023.41.16_suppl.2599.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier: NCT03961971. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. A phase I trial of anti-Tim-3 in combination with anti-PD-1 and SRS in recurrent GBM. 2024 (22 Mar 2024). URL: https://clinicaltrials.gov/ct2/show/NCT03961971.

Lakhani N., Spreafico A., Tolcher A.W., et al. A phase I studies of Sym021, an anti-PD-1 antibody, alone and in combination with Sym022 (anti-LAG-3) or Sym023 (anti-TIM-3). Ann Oncol. 2020; 31: S704.-DOI: https://doi.org/10.1016/j.annonc.2020.08.1139. URL: https://www.annalsofoncology.org/article/S0923-7534(20)41135-4/fulltext.

Desai J., Meniawy T., Beagle B., et al. Bgb-A425, an investigational anti-TIM-3 monoclonal antibody, in combination with tislelizumab, an anti-PD-1 monoclonal antibody, in patients with advanced solid tumors: A phase I/II trial in progress. J Clin Oncol. 2020; 38(15_suppl): TPS3146-TPS3146.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier: NCT04641871. Symphogen A/S. A Phase Ib Trial of Sym021 in combination with either Sym022 or Sym023 or Sym023 and irinotecan in patients with recurrent advanced selected solid tumor malignancies. 2024. (22 Mar 2024). URL: https://clinicaltrials.gov/study/NCT04641871.

ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier: NCT04785820. Hoffmann-La Roche. A Phase II Study of Lomvastomig (RO7121661) and Tobemstomig (RO7247669) Compared With Nivolumab in Participants With Advanced or Metastatic Squamous Cell Carcinoma of the Esophagus. 2024. (22 Mar 2024) URL: https://clinicaltrials.gov/study/NCT04785820.

Falchook G.S., Ribas A., Davar D., et al. Phase 1 trial of TIM-3 inhibitor cobolimab monotherapy and in combination with PD-1 inhibitors nivolumab or dostarlimab (AMBER). J Clin Oncol. 2022; 40(16_suppl): 2504-2504.-DOI: https://doi.org/10.1200/jco.2022.40.16_suppl.2504. URL: https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.2504.

Curigliano G., Gelderblom H., Mach N., et al. Phase I/Ib clinical trial of sabatolimab, an anti–TIM-3 antibody, alone and in combination with spartalizumab, an anti–PD-1 antibody, in advanced solid tumors. Clin Cancer Res. 2021; 27(13): 3620-3629.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-4746. URL: https://aacrjournals.org/clincancerres/article/27/13/3620/671520/Phase-I-Ib-Clinical-Trial-of-Sabatolimab-an-Anti.

Hellmann M.D., Bivi N., Calderon B., et al. Safety and immunogenicity of LY3415244, a bispecific antibody against TIM-3 and PD-L1, in patients with advanced solid tumors. Clin Cancer Res. 2021; 27(10): 2773-2781.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-3716. URL: https://aacrjournals.org/clincancerres/article/27/10/2773/665643/Safety-and-Immunogenicity-of-LY3415244-a.

Harding J.J., Moreno V., Bang Y.J., et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: A phase Ia/b study of LY3321367 with or without an Anti-PD-L1 antibody. Clin Cancer Res. 2021; 27(8): 2168-2178.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-4405. URL: https://aacrjournals.org/clincancerres/article/27/8/2168/672067/Blocking-TIM-3-in-Treatment-refractory-Advanced.

Hollebecque A., Chung H.C., Miguel M.J.D., et al. Safety and Antitumor Activity of a-PD-L1 Antibody as Monotherapy or in Combination witha-TIM-3 Antibody in Patients with Microsatellite Instability-High/Mismatch Repair-Deficient Tumors. Clin Cancer Res. 2021; 27(23): 6393-6404.-DOI: https://doi.org/10.1158/1078-0432.CCR-21-0261. URL: https://aacrjournals.org/clincancerres/article/27/23/6393/675031/Safety-and-Antitumor-Activity-of-PD-L1-Antibody-as.

Filipovic A., Wainber Z., Wang J., et al. Phase ½ study of an anti-galectin-9 antibody, LYT-200, in patients with metastatic solid tumors. J Immunother Cancer. 2021; 9: A512-A512.-DOI: https://doi.org/10.1136/jitc-2021-SITC2021.482. URL: https://jitc.bmj.com/lookup/doi/10.1136/jitc-2021-SITC2021.482.

Sharpe A.H., Pauken K.E. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018; 18(3): 153-167.-DOI: https://doi.org/10.1038/nri.2017.108. URL: https://www.nature.com/articles/nri.2017.108.

Parry R.V., Chemnitz J.M., Frauwirth K.A., et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005; 25(21): 9543-9553.-DOI: https://doi.org/10.1128/MCB.25.21.9543-9553.2005. URL: https://www.tandfonline.com/doi/full/10.1128/MCB.25.21.9543-9553.2005.

Bardhan K., Anagnostou T., Boussiotis V.A. The PD1: PD-L1/2 pathway from discovery to clinical implementation. Front Immunol. 2016; 7.-DOI: https://doi.org/10.3389/fimmu.2016.00550. URL: https://www.frontiersin.org/articles/10.3389/fimmu.2016.00550/full.

Acharya N., Sabatos-Peyton C., Anderson A.C. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020; 8(1): e000911.-DOI: https://doi.org/10.1136/jitc-2020-000911. URL: https://jitc.bmj.com/lookup/pmidlookup?view=long&pmid=32601081.

Wolf Y., Anderson A.C., Kuchroo V.K. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020; 20(3): 173-185.-DOI: https://doi.org/10.1038/s41577-019-0224-6. URL: https://www.nature.com/articles/s41577-019-0224-6.

Chou F.-C., Chen H.-Y., Kuo C.-C., Sytwu H.-K. Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci. 2018; 19(2): 430.-DOI: https://doi.org/10.3390/ijms19020430. URL: https://www.mdpi.com/1422-0067/19/2/430.

Lv Y., Ma X., Ma Y., et al. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes Dis. 2023; 10(6): 2366-2382.-DOI: https://doi.org/10.1016/j.gendis.2022.05.020. URL: https://www.sciencedirect.com/science/article/pii/S2352304222001556.

Mathieu M., Cotta‐Grand N., Daudelin J., et al. Notch signaling regulates PD‐1 expression during CD8 + T‐cell activation. Immunol Cell Biol. 2013;91(1):82–88.-DOI: https://doi.org/10.1038/icb.2012.53. URL: https://onlinelibrary.wiley.com/doi/10.1038/icb.2012.53.

Yu W., Wang Y., Guo P. Notch signaling pathway dampens tumor-infiltrating CD8+ T cells activity in patients with colorectal carcinoma. Biomed Pharmacother. 2018; 97: 535-542.-DOI: https://doi.org/10.1016/j.biopha.2017.10.143. URL: https://www.sciencedirect.com/science/article/pii/S0753332217345808?via%3Dihub.

Mao L., Zhao Z., Yu G., et al. γ‐Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. Int J Cancer. 2018; 142(5): 999-1009.-DOI: https://doi.org/10.1002/ijc.31115. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31115.

Salmaninejad A., Valilou S.F., Shabgah A.G., et al. PD‐1/PD‐L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019; 234(10): 16824-16837.-DOI: https://doi.org/10.1002/jcp.28358. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcp.28358.

Banerjee H., Nieves-Rosado H., Kulkarni A., et al. Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Rep. 2021; 36(11): 109699.-DOI: https://doi.org/10.1016/j.celrep.2021.109699. URL: https://www.sciencedirect.com/science/article/pii/S2211124721011463?via%3Dihub.

Lipp J.J., Wang L., Yang H., et al. Functional and molecular characterization of PD1 + tumor-infiltrating lymphocytes from lung cancer patients. Oncoimmunology. 2022; 11(1).-DOI: https://doi.org/10.1080/2162402X.2021.2019466. URL: https://www.tandfonline.com/doi/full/10.1080/2162402X.2021.2019466.

Taylor A., Harker J.A., Chanthong K., et al. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8+ cytolytic T cell responses. Immunity. 2016; 44(2): 274-286.-DOI: https://doi.org/10.1016/j.immuni.2016.01.018. URL: https://www.sciencedirect.com/science/article/pii/S107476131630005X?via%3Dihub.

Tomkowicz B., Walsh E., Cotty A., et al. TIM-3 Suppresses anti-CD3/CD28-induced TCR activation and IL-2 expression through the NFAT signaling pathway. PLoS One. 2015; 10(10): e0140694.-DOI: https://doi.org/10.1371/journal.pone.0140694. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140694.

Lee M.J., Woo M.-Y., Chwae Y.-J., et al. Down-regulation of interleukin-2 production by CD4+ T cells expressing TIM-3 through suppression of NFAT dephosphorylation and AP-1 transcription. Immunobiology. 2012; 217(10): 986-995.-DOI: https://doi.org/10.1016/j.imbio.2012.01.012. URL: https://www.sciencedirect.com/science/article/pii/S0171298512000162?via%3Dihub.

Sen T., Rodriguez B.L., Chen L., et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 2019; 9(5): 646-661.-DOI: https://doi.org/10.1158/2159-8290.CD-18-1020. URL: https://aacrjournals.org/cancerdiscovery/article/9/5/646/42069/Targeting-DNA-Damage-Response-Promotes-Antitumor.

Fu J., Kanne D.B., Leong M., et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015; 7(283).-DOI: https://doi.org/10.1126/scitranslmed.aaa4306. URL: https://www.science.org/doi/10.1126/scitranslmed.aaa4306?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed.

Hu M., Zhou M., Bao X., et al. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. J Clin Invest. 2021; 131(3).-DOI: https://doi.org/10.1172/JCI139333. URL: https://www.jci.org/articles/view/139333.

Zheng S., Song J., Linghu D., et al. Galectin-9 blockade synergizes with ATM inhibition to induce potent anti-tumor immunity. Int J Biol Sci. 2023; 19(3): 981-993.-DOI: https://doi.org/10.7150/ijbs.79852. URL: https://www.ijbs.com/v19p0981.htm.

Wang H., Hu S., Chen X., et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci. 2017; 114: 1637-1642.-DOI: https://doi.org/10.1073/pnas.1621363114. URL: https://www.pnas.org/doi/10.1073/pnas.1621363114.

Garcia-Diaz A., Shin D.S., Moreno B.H., et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017; 19(6): 1189-1201.-DOI: https://doi.org/10.1016/j.celrep.2017.04.031. URL: https://www.sciencedirect.com/science/article/pii/S2211124717305259?via%3Dihub.

Li P., Huang T., Zou Q., et al. FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. J Immunol. 2019; 202(10): 3065-3075.-DOI: https://doi.org/10.4049/jimmunol.1801199. URL: https://journals.aai.org/jimmunol/article/202/10/3065/845/FGFR2-Promotes-Expression-of-PD-L1-in-Colorectal.

Sasidharan Nair V., Toor S.M., Ali B.R., Elkord E. Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin Ther Targets. 2018; 22(6): 547-557.-DOI: https://doi.org/10.1080/14728222.2018.1471137. URL: https://www.tandfonline.com/doi/full/10.1080/14728222.2018.1471137.

Atsaves V., Tsesmetzis N., Chioureas D., et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia. 2017; 31(7): 1633-1637.-DOI: https://doi.org/10.1038/leu.2017.103. URL: https://www.nature.com/articles/leu2017103.

Jiang X., Zhou J., Giobbie-Hurder A., et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res. 2013; 19(3): 598-609.-DOI: https://doi.org/10.1158/1078-0432.CCR-12-2731. URL: https://aacrjournals.org/clincancerres/article/19/3/598/208668/The-Activation-of-MAPK-in-Melanoma-Cells-Resistant.

Parsa A.T., Waldron J.S., Panner A., et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007; 13(1): 84-88.-DOI: https://doi.org/10.1038/nm1517. URL: https://www.nature.com/articles/nm1517.

Chen N., Fang W., Zhan J., et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015; 10(6): 910-923.-DOI: https://doi.org/10.1097/JTO.0000000000000500. URL: https://www.sciencedirect.com/science/article/pii/S1556086415330422?via%3Dihub.

Atefi M., Avramis E., Lassen A., et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res. 2014; 20(13): 3446-3457.-DOI: https://doi.org/10.1158/1078-0432.CCR-13-2797. URL: https://aacrjournals.org/clincancerres/article/20/13/3446/78466/Effects-of-MAPK-and-PI3K-Pathways-on-PD-L1.

Antonangeli F., Natalini A., Garassino M.C., et al. Regulation of PD-L1 expression by NF-κB in cancer. Front Immunol. 2020; 11.-DOI: https://doi.org/10.3389/fimmu.2020.584626. URL: https://www.frontiersin.org/articles/10.3389/fimmu.2020.584626/full.

Gowrishankar K., Gunatilake D., Gallagher S.J., et al. Inducible but not constitutive expression of PD-L1 in human melanoma cells is dependent on activation of NF-κB. PLoS One. 2015; 10(4): e0123410.-DOI: https://doi.org/10.1371/journal.pone.0123410. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123410.

Maeda T., Hiraki M., Jin C., et al. MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer Res. 2018; 78(1): 205-215.-DOI: https://doi.org/10.1158/0008-5472.CAN-17-1636. URL: https://aacrjournals.org/cancerres/article/78/1/205/625019/MUC1-C-Induces-PD-L1-and-Immune-Evasion-in-Triple.

Bouillez A., Rajabi H., Jin C., et al. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene. 2017; 36(28): 4037-4046.-DOI: https://doi.org/10.1038/onc.2017.47. URL: https://www.nature.com/articles/onc201747.

Du L., Lee J.-H., Jiang H., et al. β-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med. 2020; 217(11).-DOI: https://doi.org/10.1084/jem.20191115. URL: https://rupress.org/jem/article/217/11/e20191115/152055/Catenin-induces-transcriptional-expression-of-PD.

Castagnoli L., Cancila V., Cordoba-Romero S.L., et al. WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene. 2019; 38(21): 4047-4060.-DOI: https://doi.org/10.1038/s41388-019-0700-2. URL: https://www.nature.com/articles/s41388-019-0700-2.

Han Y. Analysis of the role of the Hippo pathway in cancer. J Transl Med. 2019; 17: 116. -DOI: https://doi.org/10.1186/s12967-019-1869-4. URL: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-1869-4.

Hsu P.-C., Jablons D.M., Yang C.-T., You L. Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci. 2019; 20(15): 3821.-DOI: https://doi.org/10.3390/ijms20153821. URL: https://www.mdpi.com/1422-0067/20/15/3821.

Lu M., Wang K., Ji W., et al. FGFR1 promotes tumor immune evasion via YAP-mediated PD-L1 expression upregulation in lung squamous cell carcinoma. Cell Immunol. 2022; 379: 104577.-DOI: https://doi.org/10.1016/j.cellimm.2022.104577. URL: https://www.sciencedirect.com/science/article/pii/S0008874922001022?via%3Dihub.

Yang R., Sun L., Li C.-F., et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021; 12(1): 832.-DOI: https://doi.org/10.1038/s41467-021-21099-2. URL: https://www.nature.com/articles/s41467-021-21099-2.

Ju M.-H., Byun K.-D., Park E.-H., et al. Association of galectin 9 expression with immune cell infiltration, programmed cell death ligand-1 expression, and patient’s clinical outcome in triple-negative breast cancer. Biomedicines. 2021; 9(10): 1383.-DOI: https://doi.org/10.3390/biomedicines9101383. URL: https://www.mdpi.com/2227-9059/9/10/1383.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2024