Диагностика молекулярных нарушений при раке яичников. Позиция Межрегиональной организации молекулярных генетиков в онкологии и онкогематологии
Загрузок: 4
Просмотров: 16
pdf

Ключевые слова

рак яичника
молекулярно-генетическая диагностика
таргетная терапия

Как цитировать

Кекеева, Т. В., Имянитов, Е. Н., Демидова, И. А., Друй , А. Е., Филипенко , М. Л., Цаур , Г. А., & Цуканов, А. С. (2025). Диагностика молекулярных нарушений при раке яичников. Позиция Межрегиональной организации молекулярных генетиков в онкологии и онкогематологии. Вопросы онкологии, 71(4), OF–2259. https://doi.org/10.37469/0507-3758-2025-71-4-OF-2259

Аннотация

Злокачественные эпителиальные опухоли яичников — это гетерогенная группа новообразований, которая включает в себя пять гистологических подтипов: серозный рак высокой степени злокачественности, серозный рак низкой степени злокачественности, эндометриоидный, светлоклеточный и муцинозный рак. Перечисленные подтипы имеют существенные различия профилей молекулярных нарушений, происхождения, вклада наследственной предрасположенности, характера инвазии и метастазирования, чувствительности к химиотерапии и прогноза. В этом обзоре суммируются текущие знания о каждом гистотипе, освещаются последние достижения в области изучения этих заболеваний и излагаются приоритеты молекулярно-генетических исследований для улучшения результатов лечения пациентов.

https://doi.org/10.37469/0507-3758-2025-71-4-OF-2259
Загрузок: 4
Просмотров: 16
pdf

Библиографические ссылки

Kurman R., Carcangiu M., Harrington C., et al. WHO Classification of Tumours of Female Reproductive Organs, 4th Edition. WHO/IARC Classification of Tumours. 2014; 6. Lyon: IARC Publications.

Prat J. New insights into ovarian cancer pathology. Ann Oncol. 2012; 23(10): x111-117.-DOI: 10.1093/annonc/mds300.

Jung H., Lee S., Hong J., Chun Y. Interobserver diagnostic reproducibility in advanced‐stage endometrial carcinoma. J Pathol Transl Med. 2021; 55(1): 43‐52.-DOI: 10.4132/jptm.2020.10.04.

Kobel M., Luo L., Grevers X., et al. Ovarian carcinoma histotype: strengths and limitations of integrating morphology with immunohistochemical predictions. Int J Gynecol Pathol. 2019; 38(4): 353-362.-DOI: 10.1097/PGP.0000000000000530.

Hollis R., Thomson J., Stanley B., et al. Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome. Nat Commun. 2020; 11: 4995.-DOI: 10.1038/s41467-020-18819-5.

Alwafai Z., Heinz M., Fazeli S., et al. Accuracy of endometrial sampling in the diagnosis of endometrial cancer: a multicenter retrospective analysis of the JAGO-NOGGO. BMC Cancer. 2024; 24: 380.-DOI: 10.1186/s12885-024-12127-7.

Manning-Geist B., Gordhandas S., Liu Y., et al. MAPK pathway genetic alterations are associated with prolonged overall survival in low-grade serous ovarian carcinoma. Clin Cancer Res. 2022; 28(20): 4456-4465.-DOI: 10.1158/1078-0432.CCR-21-4183.

Bolton K., Chen D., Fuente R., et al. Molecular Subclasses of Clear Cell Ovarian Carcinoma and Their Impact on Disease Behavior and Outcomes. Clin Cancer Res. 2022; 28(22): 4947-4956.-DOI: 10.1158/1078-0432.CCR-21-3817.

Kindelberger D., Lee Y., Miron A., et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. Am J Surg Pathol. 2007; 31(2): 161-169.-DOI: 10.1097/01.pas.0000213335.40358.47.

Данилова Н., Андреева Ю., Королев А., et al. Роль диспластических изменений эпителия маточной трубы в гистогенезе рака яичников. Архив патологии. 2014; 4: 9-14.- URL: https://www.mediasphera.ru/issues/arkhiv-patologii/2014/4/1000419552014041009. [Danilova N., Andreeva Y., Korolev A., et al. Role of dysplastic changes in the uterine tubal epithelium in the histogenesis of ovarian cancer. Russian Journal of Archive of Pathology. 2014; 76(4): 9‑14.-URL: https://www.mediasphera.ru/issues/arkhiv-patologii/2014/4/1000419552014041009 (In Rus)].

Bell D., Berchuck A., Birrer M., et al. Integrated genomic analyses of ovarian carcinoma. Cancer Genome Atlas Research Network. Nature. 2011; 474(7353): 609-615.-DOI: 10.1038/nature10166.

Ray-Coquard I., Pautier P., Pignata S., et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med. 2019; 381: 2416-2428.-DOI: 10.1056/NEJMoa1911361.

Silwal-Pandit L., Langerod A., Borresen-Dale A. TP53 mutations in breast and ovarian cancer. Cold Spring Harb Perspect Med. 2017; 7(1): a026252.-DOI: 10.1101/cshperspect.a026252.

Rempel E., Kluck K., Beck S., et al. Pan-cancer analysis of genomic scar patterns caused by homologous repair deficiency (HRD). NPJ Precis Oncol. 2022; 6: 36.-DOI: 10.1038/s41698-022-00276-6.

Kekeeva T., Andreeva Y., Tanas A., et al. HRD testing of ovarian cancer in routine practice: what are we dealing with? Int J Mol Sci. 2023; 24(13): 10497.-DOI: 10.3390/ijms241310497.

Gonzalez D., Stenzinger A. Homologous recombination repair deficiency (HRD): From biology to clinical exploitation. Genes Chromosomes Cancer. 2021; 60: 299-302.-DOI: 10.1002/gcc.22939.

Takaya H., Nakai H., Takamatsu S., et al. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep. 2020; 10: 2757.-DOI: 10.1038/s41598-020-59671-3.

Chang H., Pannunzio N., Adachi N., Lieber M. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017; 18(8): 495-506.-DOI: 10.1038/nrm.2017.48.

Du W., Amarachintha S., Wilson A., et al. Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells. Sci Rep. 2016; 6: 22167.-DOI: 10.1038/srep22167.

Coleman R., Oza A., Lorusso D., et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017; 390: 1949-1961.-DOI: 10.1016/S0140-6736(17)32440-6.

Coleman R., Fleming G., Brady M., et al. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med. 2019; 381: 2403-2415.-DOI: 10.1056/NEJMoa1909707.

Gonzalez-Martin A., Pothuri B., Vergote I., et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2019; 381: 2391-2402.-DOI: 10.1056/NEJMoa1910962.

Willers H., Taghian A., Luo C., et al. Utility of DNA repair protein foci for the detection of putative BRCA1 pathway defects in breast cancer biopsies. Mol Cancer Res. 2009; 7: 1304-1309.-DOI: 10.1158/1541-7786.MCR-09-0149.

Castroviejo‐Bermejo M., Cruz C., Llop‐Guevara A., et al. A RAD51 assay feasible in routine tumor samples calls PARP inhibitor response beyond BRCA mutation. EMBO Mol Med. 2018; 10(12): e9172.-DOI: 10.15252/emmm.201809172.

Batalini F., Gulhan D., Mao V., et al. Mutational signature 3 detected from clinical panel sequencing is associated with responses to olaparib in breast and ovarian cancers. Clin Cancer Res. 2022; 28(21): 4714-4723.-DOI: 10.1158/1078-0432.CCR-22-0749.

Davies H., Glodzik D., Morganella S., et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017; 23(4): 517-525.-DOI: 10.1038/nm.4292.

Alexandrov L., Kim J., Haradhvala N., et al. The repertoire of mutational signatures in human cancer. Nature. 2020; 578(7793): 94-101.-DOI: 10.1038/s41586-020-1943-3.

Leibowitz B., Dougherty B., Bell J., et al. Validation of genomic and transcriptomic models of homologous recombination deficiency in a real-world pan-cancer cohort. BMC Cancer. 2022; 22(1): 587.-DOI: 10.1186/s12885-022-09669-z.

Peng G., Lin C., Mo W., et al. Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun. 2014; 5: 3361.-DOI: 10.1038/ncomms4361.

Guffanti F., Mengoli I., Damia G. Current HRD assays in ovarian cancer: differences, pitfalls, limitations, and novel approaches. Front Oncol. 2024; 14: 1405361.-DOI: 10.3389/fonc.2024.1405361.

Russell H., McCluggage G. A multistep model for ovarian tumorigenesis: the value of mutation analysis in the KRAS and BRAF genes. J Pathol. 2004; 203(2): 617-619.-DOI: 10.1002/path.1563.

Jang J., Yanaihara N., Pujade-Lauraine E., et al. Update on rare epithelial ovarian cancers: based on the Rare Ovarian Tumors Young Investigator Conference. J Gynecol Oncol. 2017; 28(4): e54.-DOI: 10.3802/jgo.2017.28.e54.

Cheasley D., Nigam A., Zethoven M., et al. Genomic analysis of low-grade serous ovarian carcinoma to identify key drivers and therapeutic vulnerabilities. J Pathol. 2021; 253(1): 41-54.-DOI: 10.1002/path.5545.

Grisham R., Slomovitz B., Andrews N., et al. Low-grade serous ovarian cancer: expert consensus report on the state of the science. Int J Gynecol Cancer. 2023; 33(9): 1331-1344.-DOI: 10.1136/ijgc-2023-004610.

Etemadmoghadam D., Azar W., Lei Y., et al. EIF1AX and NRAS Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas. Cancer Res. 2017; 77: 4268-4278.

Monk B., Grisham R., Banerjee S., et al. MILO/ENGOT-ov11: Binimetinib Versus Physician's Choice Chemotherapy in Recurrent or Persistent Low-Grade Serous Carcinomas of the Ovary, Fallopian Tube, or Primary Peritoneum. J Clin Oncol. 2020; 38(32): 3753-3762.-DOI: 10.1200/JCO.20.01164.

Gershenson D., Miller A., Brady W., et al. Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): an international, randomised, open-label, multicentre, phase 2/3 trial. Lancet. 2022; 399(10324): 541-553.-DOI: 10.1016/S0140-6736(21)02175-9.

Salama A., Li S., Macrae E., et al. Dabrafenib and trametinib in patients with tumors with BRAF V600E mutations: Results of the NCI-MATCH trial subprotocol H. J Clin Oncol. 2020; 38: 3895-3904.-DOI: 10.1200/JCO.20.00762.

Pierson W., Peters P., Chang M., et al. An integrated molecular profile of endometrioid ovarian cancer. Gynecol Oncol. 2020; 157(1): 55-61.-DOI: 10.1016/j.ygyno.2020.02.011.

Ryan N., Evans D., Green K., Crosbie E. Pathological features and clinical behavior of Lynch syndrome-associated ovarian cancer. Gynecol Oncol. 2017; 144(3): 491-495.-DOI: 10.1016/j.ygyno.2017.01.005.

Hanley G., McAlpine J., Miller D., et al. A population-based analysis of germline BRCA1 and BRCA2 testing among ovarian cancer patients in an era of histotype-specific approaches to ovarian cancer prevention. BMC Cancer. 2018; 18: 254.-DOI: 10.1186/s12885-018-4153-8.

Alsop K., Fereday S., Meldrum C., et al. BRCA mutation frequency and patterns of treatment response in brca mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J Clin Oncol. 2012; 30(21): 2654-2663.-DOI: 10.1200/JCO.2011.39.8545.

Ma X., Dong L., Liu X., et al. POLE/POLD1 mutation and tumor immunotherapy. J Exp Clin Cancer Res. 2022; 41(1): 216.-DOI: 10.1186/s13046-022-02422-1.

Hoang L., McConechy M., Kobel M., et al. Polymerase epsilon exonuclease domain mutations in ovarian endometrioid carcinoma. Int J Gynecol Cancer. 2015; 25(7): 1187-1193.-DOI: 10.1097/IGC.0000000000000492.

Gadducci A., Multinu F., Cosio S., et al. Clear cell carcinoma of the ovary: Epidemiology, pathological and biological features, treatment options and clinical outcomes. Gynecol Oncol. 2021; 162(3): 741-750.-DOI: 10.1016/j.ygyno.2021.06.033.

Iida Y., Okamoto A., Hollis R., et al. Clear cell carcinoma of the ovary: a clinical and molecular perspective. Int J Gynecol Cancer. 2021; 31: 605-616.-DOI: 10.1136/ijgc-2020-001656.

Okamoto A., Glasspool R., Mabuchi S., et al. Gynecologic Cancer InterGroup (GCIG) consensus review for clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2014; 24: S20-25.-DOI: 10.1097/IGC.0000000000000289.

Itamochi H., Oishi T., Oumi N., et al. Whole-genome sequencing revealed novel prognostic biomarkers and promising targets for therapy of ovarian clear cell carcinoma. Br J Cancer. 2017; 117: 717-724.-DOI: 10.1038/bjc.2017.228.

Shibuya Y., Tokunaga H., Saito S., et al. Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. Genes Chromosomes Cancer. 2018; 57: 51-60.-DOI: 10.1002/gcc.22507.

Caumanns J., Wisman G., Berns K., et al. ARID1A mutant ovarian clear cell carcinoma: a clear target for synthetic lethal strategies. Biochim Biophys Acta Rev Cancer. 2018; 1870: 176-184.-DOI: 10.1016/j.bbcan.2018.07.005.

Matulonis U., Shapira-Frommer R., Santin A., et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann Oncol. 2019; 30(7): 1080-1087.-DOI: 10.1093/annonc/mdz135.

Ngoi N., Heong V., Ow S., et al. A multicenter phase II randomized trial of durvalumab (MEDI-4736) versus physician's choice chemotherapy in recurrent ovarian clear cell adenocarcinoma (MOCCA). Int J Gynecol Cancer. 2020; 30(8): 1239-1242.-DOI: 10.1136/ijgc-2020-001604.

Kristeleit R., Clamp A., Gourley C., et al. Efficacy of pembrolizumab monotherapy (PM) for advanced clear cell gynaecological cancer (CCGC): Phase II PEACOCC trial. Ann. Oncol. 2022; 33: S783.-DOI: 10.1016/j.annonc.2022.07.649.

Banerjee S., Leary A., Stewart J., et al. ATR inhibitor alone (ceralasertib) or in combination with olaparib in gynaecological cancers with ARID1A loss or no loss: Results from the ENGOT/GYN1/NCRI ATARI trial. ESMO Open. 2023; 8(1): 1100814.-DOI: 10.1016/j.esmoop.2023.100814.

Gore M., Hackshaw A., Brady W., et al. An international, phase III randomized trial in patients with mucinous epithelial ovarian cancer (mEOC/GOG 0241) with long-term follow-up: and experience of conducting a clinical trial in a rare gynecological tumor. Gynecol Oncol. 2019; 153: 541-548.-DOI: 10.1016/j.ygyno.2019.03.256.

Zaino R., Brady M., Lele S., et al. Advanced stage mucinous adenocarcinoma of the ovary is both rare and highly lethal: a Gynecologic Oncology Group study. Cancer. 2011; 117: 554-562.-DOI: 10.1002/cncr.25460.

Ryland G., Hunter S., Doyle M., et al. Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Med. 2015; 7(1): 87.-DOI: 10.1186/s13073-015-0210-y.

Hada T., Miyamoto M., Ohtsuka Y., et al. Genetic analysis for mucinous ovarian carcinoma with infiltrative and expansile invasion and mucinous borderline tumor: a retrospective analysis. Diagn Pathol. 2023; 18(1): 49.-DOI: 10.1186/s13000-023-01340-w.

Bekaii-Saab T., Yaeger R., Spira A., et al. Adagrasib in Advanced Solid Tumors Harboring a KRASG12C Mutation. J Clin Oncol. 2023; 41: 4097-4106.-DOI: 10.1200/JCO.23.00434.

Nugawela D., Gorringe K. Targeted therapy for mucinous ovarian carcinoma: evidence from clinical trials. Int J Gynecol Cancer. 2022; 33(1): 102-108.-DOI: 10.1136/ijgc-2022-003658.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2025