ЯДЕРНАЯ ЛОКАЛИЗАЦИЯ БЕЛКА, СВЯЗЫВАЮЩЕГО РЕТИНОЕВУЮ КИСЛОТУ (CRABP1) АССОЦИИРОВАНА СО СТЕПЕНЬЮ ЗЛОКАЧЕСТВЕННОСТИ НЕЙРОЭНДОКРИННЫХ ОПУХОЛЕЙ ЛЕГКОГО
PDF

Ключевые слова

БРОНХОЛЕГОЧНЫЕ НЕЙРОЭНДОКРИННЫЕ ОПУХОЛИ
ТИПИЧНЫЙ КАРЦИНОИД
АТИПИЧНЫЙ КАРЦИНОИД
МЕЛКОКЛЕТОЧНЫЙ РАК ЛЕГКОГО
РЕТИНОЕВАЯ КИСЛОТА
СТЕПЕНЬ ЗЛОКАЧЕСТВЕННОСТИ

Как цитировать

Делекторская, В., Комельков, А., Зборовская, И., Чевкина, Е., Еникеев, А., & Сафронова, В. (2017). ЯДЕРНАЯ ЛОКАЛИЗАЦИЯ БЕЛКА, СВЯЗЫВАЮЩЕГО РЕТИНОЕВУЮ КИСЛОТУ (CRABP1) АССОЦИИРОВАНА СО СТЕПЕНЬЮ ЗЛОКАЧЕСТВЕННОСТИ НЕЙРОЭНДОКРИННЫХ ОПУХОЛЕЙ ЛЕГКОГО. Вопросы онкологии, 63(6), 886–893. https://doi.org/10.37469/0507-3758-2017-63-6-886-893

Аннотация

Бронхолегочные нейроэндокринные опухоли (НЭО) относятся к злокачественным эпителиальным новообразованиям нейроэндокринного происхождения, которые образуют крайне разнородную группу в отношении биологического поведения и клинических проявлений. При диагностике НЭО легких выделяют три основных категории различной степени злокачественности: типичные карциноиды (ТК), атипичные карциноиды (АК) и наиболее агрессивные низкодифференцированные опухоли, включающие мелкоклеточный и крупноклеточный нейроэндокринный рак легкого. Эти группы различаются в отношении прогноза и подходов к терапии заболевания, однако используемые в настоящее время критерии не всегда позволяют провести четкие границы между отдельными гистологическими вариантами. Для оптимальной классификации и градации основных категорий НЭО необходим поиск дополнительных диагностических параметров и маркеров для оценки индивидуального прогноза. В работе впервые проведено исследование белка, связывающего ретиноевую кислоту, CRABP1, в различных вариантах НЭО легкого. ИГХ анализ 43 образцов НЭО легкого различной степени дифференцировки выявил достоверную корреляцию ядерной локализации данного белка с пролиферативным индексом Ki-67 и степенью злокачественности. Полученные результаты указывают на участие CRABP1 в патогенезе бронхолегочных НЭО и свидетельствуют о необходимости дальнейшего исследования связи ядерной формы CRABP1 с клиническими показателями и выживаемостью пациентов для определения возможности использования данного белка в качестве маркера дифференциальной диагностики и/ или прогноза течения заболевания.

https://doi.org/10.37469/0507-3758-2017-63-6-886-893
PDF

Библиографические ссылки

Делекторская В., Чемерис Г., Каинов Я. и др. Экспрессия белка, связывающего ретиноевую кислоту, и про-лиферативная активность клеток в нейроэндокринных опухолях поджелудочной железы // Молекулярная медицина. - 2013. - № 1. - C. 38-44.

Делекторская В.В. Нейроэндокриные опухоли легкого: современная классификация и алгоритм морфологической диагностики // Успехи молекулярной онкологии. - 2017. - Т. 4. - № 2. - С. 46-58.

Чевкина Е.М., Фаворская И.А. Белки CRABP - родственники или однофамильцы? // Успехи молекулярной онкологии. - 2015. - № 2 (2). - C. 6-16.

Asamura H., Kameya T., Matsuno Y et al. Neuroendocrine neoplasms of the lung: a prognostic spectrum. // Journal of clinical oncology: official journal of the American Society of Clinical oncology. - 2006. - Vol. 24. - № 1. - C. 70-76.

Aslan D.L., Gulbahce H.E., Pambuccian S.E. et al. Ki-67 immunoreactivity in the differential diagnosis of pulmonary neuroendocrine neoplasms in specimens with extensive crush artifact. // American journal of clinical pathology. - 2005. - Vol. 123. - № 6. - C. 874-878.

Budhu A., Gillilan R., Noy N. Localization of the RAR interaction domain of cellular retinoic acid binding protein-II // Journal of molecular biology. - 2001. - Vol. 305. - № 4. - C. 939-949.

Campos B., Centner F.-S., Bermejo J.L. et al. Aberrant expression of retinoic acid signaling molecules influences patient survival in astrocytic gliomas // The American journal of pathology. - 2011. - Vol. 178. - № 5. - C. 1953-1964.

Caplin M.E., Baudin E., Ferolla P. et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. // Annals of oncology: official journal of the European Society for Medical Oncology. - 2015. - Vol. 26. - № 8. - C. 1604-1620.

Dong D., Ruuska S.E., Levinthal D.J. et al. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid // The Journal of biological chemistry. - 1999. - Vol. 274. - № 34. - C. 23695-23698.

Favorskaya I., Kainov Y., Chemeris G. et al. Expression and clinical significance of CRABP1 and CRABP2 in nonsmall cell lung cancer. // Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. - 2014. - Vol. 35. - № 10. - C. 10295-10300.

Gaub M.P., Lutz Y., Ghyselinck N.B. et al. Nuclear detection of cellular retinoic acid binding proteins I and II with new antibodies // The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society. - 1998. - Vol. 46. - № 10. - C. 1103-1111.

Gupta A., Williams B.R.G., Hanash S.M. et al. Cellular retinoic acid-binding protein II is a direct transcriptional target of MycN in neuroblastoma // Cancer research. - 2006. - Vol. 66. - № 16. - C. 8100-8108.

Hawthorn L., Stein L., Varma R. et al. TIMP1 and SER-PIN-A overexpression and TFF3 and CRABP1 underexpression as biomarkers for papillary thyroid carcinoma // Head & neck. -2004. - Vol. 26. - № 12. - C. 1069-1083.

Hibbs K., Skubitz K.M., Pambuccian S.E. et al. Differential gene expression in ovarian carcinoma: identification of potential biomarkers // The American journal of pathology. - 2004. - Vol. 165. - № 2. - C. 397-414.

Huang Q., Muzitansky A., Mark E.J. Pulmonary neuroendocrine carcinomas. A review of 234 cases and a statistical analysis of 50 cases treated at one institution using a simple clinicopathologic classification // Archives of pathology & laboratory medicine. - 2002. - Vol. 126. - № 5. - C. 545-553.

Huang Y, la Chapelle A. de, Pellegata N.S. Hypermethyl-ation, but not LOH, is associated with the low expression of MT1G and CRABP1 in papillary thyroid carcinoma // International journal of cancer. - 2003. - Vol. 104. - № 6. - C. 735-744.

Kainov Y, Favorskaya I., Delektorskaya V. et al. CRABP1 provides high malignancy of transformed mesenchymal cells and contributes to the pathogenesis of mesenchymal and neuroendocrine tumors // Cell Cycle. - 2014. - Vol. 13. - № 10. - C. 1530-1539.

Klimstra D.S., Modlin I.R., Adsay N.V. et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set // The American journal of surgical pathology. - 2010. - Vol. 34. - № 3. - C. 300-313.

Klimstra D.S., Modlin I.R., Coppola D. et al. The Pathologic Classification of Neuroendocrine Tumors // Pancreas. - 2010. - Vol. 39. - № 6. - C. 707-712.

Levadoux-Martin M., Li Y, Blackburn A. et al. Perinuclear localisation of cellular retinoic acid binding protein I mRNA // Biochemical and biophysical research communications. - 2006. - Vol. 340. - № 1. - C. 326-331.

Liu R.-Z., Garcia E., Glubrecht D.D. et al. CRABP1 is associated with a poor prognosis in breast cancer: adding to the complexity of breast cancer cell response to retinoic acid // Molecular cancer. - 2015. - Vol. 14. - № 1. - C. 129.

Liu R.-Z., Li S., Garcia E. et al. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma // Glia. - 2016. - Vol. 64. - № 6. - C. 963-976.

Miyake T., Ueda Y., Matsuzaki S. et al. CRABP1-reduced expression is associated with poorer prognosis in serous and clear cell ovarian adenocarcinoma // Journal of cancer research and clinical oncology. - 2011. - Vol. 137. - № 4. - C. 715-722.

Moran C.A., Suster S. Neuroendocrine Carcinomas (Carcinoid, Atypical Carcinoid, Small Cell Carcinoma, and Large Cell Neuroendocrine Carcinoma): Current Concepts // Hematology/Oncology Clinics of North America. - 2007. - Vol. 21. - № 3. - C. 395-407.

Pelosi G., Rindi G., Travis W.D. et al. Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice. // Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. - 2014. - Vol. 9. - № 3. - C. 273-284.

Pelosi G., Rodriguez J., Viale G. et al. Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: a major pitfall in the management of lung cancer patients // The American journal of surgical pathology. - 2005. - Vol. 29. - № 2. - C. 179-187.

Persaud S.D., Lin Y.-W., Wu C.-Y. et al. Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid // Cellular signalling. - 2013. - Vol. 25. - № 1. - C. 19-25.

Persaud S.D., Park S.W., Ishigami-Yuasa M. et al. All trans-retinoic acid analogs promote cancer cell apop-tosis through non-genomic Crabp1 mediating ERK1/2 phosphorylation // Scientific Reports. - 2016. - Vol. 6. - № 1. - C. 22396.

Rekhtman N. Neuroendocrine tumors of the lung: an update // Archives of pathology & laboratory medicine. - 2010. - Vol. 134. - № 11. - C. 1628-1638.

Ruff S.J., Ong D.E. Cellular retinoic acid binding protein is associated with mitochondria // FEBS letters. - 2000. - Vol. 487. - № 2. - C. 282-286.

Swarts D.R.A., Ramaekers F.C.S., Speel E.-J.M. Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities // Biochimica et biophysica acta. - 2012. - Vol. 1826. - № 2. - C. 255-271.

Swarts D.R.A., Suylen R.-J. van, Bakker M.A. den et al. Interobserver variability for the WHO classification of pulmonary carcinoids. // The American journal of surgical pathology. - 2014. - Vol. 38. - № 10. - C. 1429 -1436.

Tanaka K., Imoto I., Inoue J. et al. Frequent methyl-ation-associated silencing of a candidate tumor-suppressor, CRABP1, in esophageal squamous-cell carcinoma // Oncogene. - 2007. - № 44 (26). - C. 6456-6468.

Travis W., Brambilla E., Burke A. et al. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart / W. Travis, E. Brambilla, A. Burke, A. Marx et al., 4th ed.-е изд. - Lyon: IARC Press, 2015.

Travis W.D. Advances in neuroendocrine lung tumors. // Annals of oncology: official journal of the European Society for Medical Oncology. - 2010. - № Supplement 7 (21 Suppl 7). - C. vii65-71.

Travis W.D. Pathology and diagnosis of neuroendocrine tumors: lung neuroendocrine // Thoracic surgery clinics. - 2014. - Vol. 24. - № 3. - C. 257-266.

Travis W.D., Brambilla E., Nicholson A.G. et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification // Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. - 2015. - Vol. 10. - № 9. - C. 1243-1260.

Vreeland A.C., Levi L., Zhang W. et al. Cellular reti-noic acid-binding protein 2 inhibits tumor growth by two distinct mechanisms // The Journal of biological chemistry. - 2014. - Vol. 289. - № 49. - C. 34065-34073.

Vreeland A.C., Yu S., Levi L. et al. Transcript Stabilization by the RNA-Binding Protein HuR Is Regulated by Cellular Retinoic Acid-Binding Protein 2 // Molecular and Cellular Biology. -2014. - Vol. 34. - № 12. - C. 2135-2146.

Wick M.R. Neuroendocrine neoplasia. Current concepts. // American journal of clinical pathology. - 2000. - Vol. 113. - № 3. - C. 331-335.

Yang Z., Tang L.H., Klimstra D.S. Gastroenteropancreatic neuroendocrine neoplasms: historical context and current issues // Seminars in diagnostic pathology. - 2013. - Vol. 30. - № 3. - C. 186-196.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2017