Васкулогенная мимикрия в опухолях – современное состояние вопроса
Загрузок: 249
Просмотров: 367
pdf

Ключевые слова

васкулогенная мимикрия
васкулогенез
ангиогенез
прогностическая роль
опухолевый рост
метастазирование

Как цитировать

Мнихович, М., Безуглова, Т., Ерофеева, Л., Романов, А., Буньков , К., & Зорин , С. (2022). Васкулогенная мимикрия в опухолях – современное состояние вопроса. Вопросы онкологии, 68(6), 700–707. https://doi.org/10.37469/0507-3758-2022-68-6-700-707

Аннотация

Введение. В ходе эволюции злокачественные новообразования приобретали различные механизмы, направленные на ускорение роста и повышение вероятности метастазирования. Одним из таких механизмов является васкулогенная мимикрия, способствующая транспортировке плазмы и форменных элементов крови, минуя классические пути опухолевого ангиогенеза. Цель исследования – изучить молекулярные механизмы, особенности микроскопической картины васкулогенной мимикрии, обозначить ее роль в опухолевом процессе. Материал и методы. Осуществлен ретроспективный анализ более 70 отечественных и зарубежных научных и клинических исследований, а также обзорных статей, посвященных васкулогенной мимикрии. Заключение. Определение роли и точных механизмов васкулогенной мимикрии в канцерогенезе, позволит разработать комплекс профилактических и лечебных мероприятий, направленных на регресс опухолевого роста и предотвращение раннего метастазирования.

 

https://doi.org/10.37469/0507-3758-2022-68-6-700-707
Загрузок: 249
Просмотров: 367
pdf

Библиографические ссылки

Mueller AJ, Freeman WR, Folberg R et al. Evaluation of microvascularization pattern visibility in humanchoroidal melanomas: comparison of confocal fluorescein with indocyanine green angiography // GraefesArch Clin Exp Ophthalmol. 1999;237:448–56. doi:https://doi.org/10.1007/s004170050260

McDonald DM, Lance Munn, Rakesh KJ. Vasculogenic Mimicry: How Convincing, How Novel, and How Significant? // American Journal of Pathology. 2000;156(2):383–8. doi:10.1016/S0002-9440(10)64740-2

Mueller AJ, Bartsch DU, Folberg R et al. Imaging the microvasculature of choroidal melanomas with con-focal indocyanine green scanning laser ophthalmoscopy // Arch Ophthalmol. 1998;116:31–9.33. doi:10.1001/archopht.116.1.31

Mei X et al. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging // Neuro Oncol. 2017;19(8):1109–1118. doi:https://doi.org/10.1093/neuonc/nox016

Bussolati B et al. Endothelial cell differentiation of human breast tumour stem/progenitor cells // J Cell Mol Med. 2009;13(2):309–319. doi:https://doi.org/10.1111/j.1582-4934.2008.00338.x

Folkman J. New perspectives in clinical oncology from angiogenesis research // Eur. J. Cancer. 1996;32A (14):2534–9. doi:https://doi.org/10.1016/S0959-8049(96)00423-6

Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance // Mol. Cell. 2014;54:716–727. doi:10.1016/j.molcel.2014.05.015. PMID: 24905005

Vempati P, Popel AS, MacGabhann S. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning // Cytokine Growth Factor Rev. 2014;25(1):1–19. doi:https://doi.org/10.1016/j.cytogfr.2013.11.002

De Falco S. The discovery of placenta growth factor and its biological activity // Exp. Mol. Med. 2012;44(1):1–9. doi:https://doi.org/10.3858/emm.2012.44.1.025

Lieu C, Heymach J, Overman M et al. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis // Clin. Cancer Res. 2011;17(19):6130–9. doi:https://doi.org/10.1158/1078-0432.CCR-11-0659

Fagiani E, Christofori G. Angiopoietins in angiogenesis // Cancer Lett. 2013;328(1):18–26. doi:https://doi.org/10.1016/j.canlet.2012.08.018

Moschetta M, Mishima Y, Sahin I et al. Role of endothelial progenitor cells in cancer progression // Biochim. Biophys. Acta. 2014;1846(1):26–39. doi:https://doi.org/10.1016/j.bbcan.2014.03.005

Donnem T, Hu J, Ferguson M et al. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? // Cancer Med. 2013;2(4):427–36. doi:https://doi.org/10.1002/cam4.105

Taha Azad, Mina Ghahremani, Xiaolong Yang. The Role of YAP and TAZ in Angiogenesis and Vascular Mimicry; 2019 May;8(5):407. doi:10.3390/cells8050407

Maniotis AJ, Folberg R, Hess A et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry // Am. J. Pathol. 1999;155(3):739–52. doi:10.1016/S0002-9440(10)65173-5. PMID:10487832.

Hendrix MJ, Seftor EA, Hess AR et al. Molecular plasticity of human melanoma cells // Oncogene. 2003;22(20):3070–5.

Григорьева И.Н., Харатишвили Т.К., Барышников А.Ю. Васкулогенная мимикрия: альтернативный механизм кровоснабжения опухоли? // Российский биотерапевтический журнал. 2011;10(3):25–30. EDN QAZQAH. [Grigorieva IN, Kharatishvili TK, Baryshnikov AYu. An alternative mechanism in tumor vascularization: vasculogenic mimicry // Russian Biotherapeutic Journal. 2011;10(3):25–30 (In Russ.)].

Hess AR, Seftor EA, Gruman LM et al. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry // Cancer Biol. Ther. 2006;5(2):228–33. doi:https://doi.org/10.4161/cbt.5.2.2510

Mourad-Zeidan AA, Melnikova VO, Wang H. Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry // Am. J. Pathol. 2008;173(6):1839–52. doi:https://doi.org/10.2353/ajpath.2008.080380

Basu GD, Pathangey LB, Tinder TL. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells // Breast Cancer Res. 2005;7(4):R422–35. doi:https://doi.org/10.1186/bcr1019

Vartanian A, Gatsina G, Grigorieva I et al. The involvement of Notch signaling in melanoma vasculogenic mimicry // Clin. Exp. Med. 2013;13(3):201–9. doi:https://doi.org/10.1007/s10238-012-0190-9

Vartanian A, Stepanova E, Grigorieva I et al. Melanoma vasculogenic mimicry capillary-like structure formation depends on integrin and calcium signaling // Microcirculation. 2011;18(5):390–9. doi:https://doi.org/10.1111/j.1549-8719.2011.00102.x

Vartanian A, Stepanova E, Grigorieva I. VEGFR1 and PKC signaling control melanoma vasculogenic mimicry in a VEGFR2 kinase-independent manner // Melanoma Res. 2011;21(2):91–8. doi:10.1097/CMR.0b013e328343a237

Lissitzky JC, Parriaux D, Ristorcelli E. Cyclic AMP signaling as a mediator of vasculogenic mimicry in aggressive human melanoma cells in vitro // Cancer Res. 2009;69(3):802–9. doi:https://doi.org/10.1158/0008-5472.CAN-08-2391

Hess AR, Hendrix MJ. Focal adhesion kinase signaling and the aggressive melanoma phenotype // Cell Cycle. 2006;5(5):478–80. doi:https://doi.org/10.4161/cc.5.5.2518

Вартанян А.А. Альтернативное кровоснабжение в костном мозге при онкогематологических заболеваниях // Клин. онкогематол. 2014;7(4):491–500 [Vartanyan AA. Supplemental blood circulation system in hematologic malignancies // Clin. Oncohematol. 2014;7(4):491–500 (In Russ.)].

Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene // Proc Natl Acad Sci US A. 1991;88(13):5680–4. doi:10.1073/pnas.88.13.5680. PMID:2062846.

Sun B, Zhang D, Zhang S et al. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma // Cancer Lett. 2007;249(2):188–97. doi:10.1016/j.canlet.2006.08.016. PMID:16997457.

Zhou TJ, Huang XH, Gong L, Xiang L. Vasculogenic mimicry and hypoxia-inducible factor-1alpha expression in cervical squamous cell carcinoma // Genet Mol. Res. 2016 Mar 4;15(1):15017396. doi:10.4238/gmr.15017396. PMID:26985936.

Liu K, Sun B, Zhao X et al. Hypoxia induced epithelial-mesenchymal transition and vasculogenic mimicry formation by promoting Bcl-2/Twist1 cooperation // Exp Mol Pathol. 2015;99(2):383–91. doi:10.1016/j.yexmp.2015.08.009. PMID:26318343.

Sun W, Shen Z, Zhang H et al. Overexpression of HIF-1alpha in primary gallbladder carcinoma and its relation to vasculogenic mimicry and unfavourable prognosis // Oncol Rep. 2012;27(6):1990–2002. doi:10.3892/or.2012.1746. PMID:22470047.

Seftor RE, Hess AR, Seftor EA et al. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise // Am. J. Pathol. 2012;181(4):1115–1125. doi:10.1016/j.ajpath.2012.07.013. PMID:22944600.

Wegenblast E, Soto M, Gutierrez-Angel S et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis // Nature. 2015;520:358–362. doi:10.1038/nature14403. PMID:25855289.

Hess AR, Seftor EA, Gruman LM et al. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: Implications for vasculogenic mimicry // Cancer Biol. Ther. 2006;5:228–33. 10.4161 / cbt.5.2.2510 doi:https://doi.org/10.4161/cbt.5.2.2510

Hess AR, Postovit L-M, Margaryan NV et al. Focal adhesion kinase promotes the aggressive melanoma phenotype // Cancer Res. 2005;65:9851–60. doi:https://doi.org/10.1158/0008-5472.CAN-05-2172

Liu W, Xu G, Jia W et al. Prognostic significance and mechanisms of patterned matrix vasculogenic mimicry in hepatocellular carcinoma // Med Oncol. 2011;28 (Suppl. 1):S228–38. doi:10.1007/s12032-010-9706-x

Giannelli G, Falk-Marzillier J, Schiraldi O et al. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5 // Science. 1997;277:225–8. doi:10.1126/science.277.5323.225

Koshikawa N, Giannelli G, Cirulli V et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5 // J Cell Biol. 2000;148:615–24. doi:10.1083/jcb.148.3.615

Клеточные линии меланомы человека. Монография / Под общ. ред. И.Н. Михайловой, М.М.Давыдова. СПб.: Наукоемкие технологии, 2017. ISBN: 978-5-9909412-3-6 [Human melanoma cell lines. Monograph / Ed. by N. Mikhailova, M.M. Davydov. St. Petersburg: Science-intensive Technologies, 2017. ISBN:978-5-9909412-3-6 (In Russ.)].

Vartanian A, Gatsina G, Grigorieva I et al. The involvement of Notch signaling in melanoma vasculogenic mimicry // Clin Exp Med. 2013;13:201–209. https://doi.org/10.1007/s10238-012-0190-9

Clarijs R, van Dijk M, Ruiter DJ, de Waal RM. Functional and morphologic analysis of the fluid-conducting meshwork in xenografted cutaneous and primary uveal melanoma // Invest. Ophthalmol. Vis. Sci. 2015;46(9):3013–20. doi:10.1167/iovs.04-0876. PMID:16123395

Foss AJE, Alexander RA, Hungerford J et al. Re-assessment of the PAS patterns in uveal melanoma //Br J Ophthalmol. 1997;81:240–6. doi:http://dx.doi.org/10.1136/bjo.81.3.240

Folberg R, Rummel V, Ginderdeuren R et al. The prognostic value of tumor blood vessel morphology in primary uveal melanoma // Ophthalmology. 1993;100:1389–98. doi:https://doi.org/10.1016/S0161-6420(93)31470-3

Folberg R, Rummelt V, Parys-Van Ginderdeuren R et al. The Prognostic Value of Tumor Blood Vessel Morphology in Primary Uveal Melanoma // Ophthalmology. 1993;100(9):1389–98. doi:https://doi.org/10.1016/S0161-6420(93)31470-3

Григорьева И.Н., Харатишвили Т.К., Барышников А.Ю. Васкулогенная мимикрия: альтернативный механизм кровоснабжения опухоли? Российский биотерапевтический журнал. 2011;10(3):25-30 [Grigorieva I.N., Kharatishvili T.K., Baryshnikov A.Yu. Vasculogenic mimicry: an alternative mechanism of tumor blood supply? Russian Biotherapeutic Journal. 2011;10(3):25-30].

Ren K, Yao N, Wang G et al. Vasculogenic mimicry: a new prognostic sign of human osteosarcoma // Hum. Pathol. 2014;45(10):2120–2129. doi:https://doi.org/10.1016/j.humpath.2014.06.013

Liang J, Yang B, Cao Q, Wu X. Association of Vasculogenic Mimicry Formation and CD133 Expression with Poor Prognosis in Ovarian Cancer // Gynecol Obstet Investig. 2016;81(6):529–536. doi:https://doi.org/10.1159/000445747

Li M, Gu Y, Zhang Z et al. Vasculogenic mimicry: a new prognostic sign of gastric adenocarcinoma // Pathol Oncol Res. 2010;16(2):259–266. doi:https://doi.org/10.1007/s12253-009-9220-7

Wang W, Lin P, Han C et al. Vasculogenic mimicry contributes to lymph node metastasis of laryngeal squamous cell carcinoma // J Exp Clin Cancer Res. 2010;29:60. doi:https://doi.org/10.1186/1756-9966-29-60

Cameron D, Brown J, Dent R et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial // Lancet Oncol. 2013;14(10):933–42 doi:https://doi.org/10.1016/S1470-2045(13)70335-8

Corrie PG, Marshall A, Dunn JA et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study // Lancet Oncol. 2014;15(6):620–30. DJI:https://doi.org/10.1016/S1470-2045(14)70110-X

Angara K, Rashid MH, Shankar A et al. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies // Histol Histopathol. 2016:11856. doi:10.14670/HH-11-856

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2022