Роль хромосомной транслокации при формировании экстраординарного онкогена
Загрузок: 97
Просмотров: 267
pdf

Ключевые слова

хросомная транслокация
двухцепочечные разрывы ДНК
репарация ДНК
онкоген
слитый белок
злокачественные опухоли

Как цитировать

Полатова, Д. Ш., Гильдиева, М. С., Мадаминов, А. Ю., Савкин, А. В., Нуржабов, А. И., Асамединов, Н. К., Ибрагимова, Д. А., & Насиров, С. К. (2024). Роль хромосомной транслокации при формировании экстраординарного онкогена. Вопросы онкологии, 70(4), 633–642. https://doi.org/10.37469/0507-3758-2024-70-4-633-642

Аннотация

При диагностике острых лейкозов, некоторых видов лимфом и солидных опухолей своевременное выявление структурных изменений хромосом в опухолевых клетках имеет большое значение для адекватной прогностической оценки и выбора эффективного варианта лечения. В геноме человека двухцепочечные разрывы ДНК (DSB) нередко возникают при функциональных рекомбинациях и в результате действия различных мутагенных факторов. Нарушение транспорта DSB и взаимодействия со специализированными участками репарационной активности HDR (homology-directed repair, гомологичная репарация) может приводить к номологическому соединению концов хромосом. Подобное абберантное восстановление поврежденных кластеров генома приводит к образованию хромосомных транслокаций. Кроме того, нарушение регуляторной способности критических генов, активирующих рекомбинацию (RAG, recombination activating gene) и деаминазы, индуцированной активацией (AID, activation-induced deaminase), может привести к образованию локусов с хрупкими сегментами хроматина и, тем самым, к повышению вероятности аномальной перестройки хромосом. В настоящее время установлено большое количество возникающих с той или иной частотой хромосомных аберраций, ассоциированных с определенным вариантом опухоли. Однако закономерности аномальной рекомбинации фрагментов генома при двухцепочных разрывах ДНК все еще остаются предметом дискуссии. Понимание молекулярных механизмов хромосомной транслокации может стать основой для разработки новых терапевтических средств против злокачественных опухолей.

https://doi.org/10.37469/0507-3758-2024-70-4-633-642
Загрузок: 97
Просмотров: 267
pdf

Библиографические ссылки

Gasparini P., Sozzi G., Pierotti M.A. The role of chromosomal alterations in human cancer development. J Cell Biochem. 2007; 102(2): 320-331.-DOI: https://doi.org/10.1002/jcb.21481.

Sampaio M.M., Santos M.L.C., Marques H.S., et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol. 2021; 12(2): 69-94.-DOI: https://doi.org/10.5306/wjco.v12.i2.69.

Lomov N.A., Viushkov V.S., Ulianov S.V., et al. Recurrent translocations in topoisomerase inhibitor-related leukemia are determined by the features of DNA breaks rather than by the proximity of the translocating genes. Int J Mol Sci. 2022; 23(17): 9824.-DOI: https://doi.org/10.3390/ijms23179824.

Мустяцэ В. BCR-ABL1-позитивный и BCR-ABL1-негативный острые лимфобластные лейкозы: описание трёх клинических случаев и обзор литературы. Вопросы онкологии. 2023; 69(1), 143-148.-DOI: https://doi.org/10.37469/0507-3758-2023-69-1-143-148. [Musteata V. BCR-ABL1-positive and BCR-ABL1-negative acute lymphoblastic leukaemia: description of three clinical cases and literature review. Voprosy Onkologii = Problems in Oncology. 2023; 69(1): 143-8.-DOI: https://doi.org/10.37469/0507-3758-2023-69-1-143-148. (In Rus)].

Jabbour E., Short N.J., Jain N., et al. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial. Lancet Haematol. 2023; 10(1): e24-e34.-DOI: https://doi.org/10.1016/S2352-3026(22)00319-2.

Qu J., Li S., Yu D. Detection of complex chromosome rearrangements using optical genome mapping. Gene. 2023; 884: 147688.-DOI: https://doi.org/10.1016/j.gene.2023.147688.

Харченко Е., Семиглазова Т., Артемьева А., et al. Прогностическая значимость иммуногистохимических и молекулярно-генетических характеристик диффузной крупноклеточной в-клеточной лимфомы. Вопросы онкологии. 2020; 66(1): 79-89.-DOI: https://doi.org/10.37469/0507-3758-2020-66-1-79-89. [Kharchenko Y., Semiglazova T., Artemeva A., et al. Prognostic impact of immunohistochemical and molecular genetic markers in diffuse large B-cell lymphoma. Voprosy Onkologii = Problems in Oncology. 2020; 66(1): 79-89.-DOI: https://doi.org/10.37469/0507-3758-2020-66-1-79-89. (Rus)].

Ramsden D.A., Nussenzweig A. Mechanisms driving chromosomal translocations: lost in time and space. Oncogene. 2021; 40(25): 4263-4270.-DOI: https://doi.org/10.1038/s41388-021-01856-9.

Yang J.H., Brandão H.B., Hansen A.S. DNA double-strand break end synapsis by DNA loop extrusion. Nat Commun. 2023; 14(1): 1913.-DOI: https://doi.org/10.1038/s41467-023-37583-w.

Lamm N., Rogers S., Cesare A.J. Chromatin mobility and relocation in DNA repair. Trends Cell Biol. 2021; 31(10): 843-855.-DOI: https://doi.org/10.1016/j.tcb.2021.06.002.

Roukos V., Misteli T. The biogenesis of chromosome translocations. Nat Cell Biol. 2014; 16(4): 293-300.-DOI: https://doi.org/10.1038/ncb2941.

Lamm N., Read M.N., Nobis M., et al. Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress. Nat Cell Biol. 2020; 22(12): 1460-1470.-DOI: https://doi.org/10.1038/s41556-020-00605-6.

Ghezraoui H., Piganeau M., Renouf B., et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell. 2014; 55(6): 829-842.DOI: https://doi.org/10.1016/j.molcel.2014.08.002.

Scully R., Panday A., Elango R., Willis N.A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019; 20(11): 698-714.-DOI: https://doi.org/10.1038/s41580-019-0152-0.

Tamizh Selvan G., Venkatachalam P. Ataxia telengectesia protein influences bleomycin-induced DNA damage in human fibroblast cells. Cell Biochem Biophys. 2024.-DOI: https://doi.org/10.1007/s12013-024-01275-z.

Arnould C., Legube G. The secret life of chromosome loops upon DNA double-strand break. J Mol Biol. 2020; 432(3): 724-736.-DOI: https://doi.org/10.1016/j.jmb.2019.07.036.

Stinson B.M., Loparo J.J. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem. 2021; 90: 137-164.-DOI: https://doi.org/10.1146/annurev-biochem-080320-110356.

Stinson B.M., Moreno A.T., Walter J.C., Loparo J.J. A mechanism to minimize errors during non-homologous end joining. Mol Cell. 2020; 77(5): 1080-1091.e8.-DOI: https://doi.org/10.1016/j.molcel.2019.11.018.

Zhao B., Rothenberg E., Ramsden D.A., Lieber M.R. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020; 21(12): 765-781.-DOI: https://doi.org/10.1038/s41580-020-00297-8.

Wright W.D., Shah S.S., Heyer W.D. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem. 2018; 293(27): 10524-10535.-DOI: https://doi.org/10.1074/jbc.TM118.000372.

Smith B.A.H., Deutzmann A., Correa K.M., et al. MYC-driven synthesis of Siglec ligands is a glycoimmune checkpoint. Proc Natl Acad Sci USA. 2023; 120(11): e2215376120.-DOI: https://doi.org/10.1073/pnas.2215376120.

Nambiar M., Raghavan S.C. Chromosomal translocations among the healthy human population: implications in oncogenesis. Cell Mol Life Sci. 2013; 70(8): 1381-1392.-DOI: https://doi.org/10.1007/s00018-012-1135-x.

Chamba C., Mbulaiteye S.M., Balandya E., Schuh A. Clinical application of circulating cell-free lymphoma DNA for fast and precise diagnosis of Burkitt lymphoma: Precision medicine for sub-Saharan Africa. Camb Prism Precis Med. 2023; 1: e13.-DOI: https://doi.org/10.1017/pcm.2023.1.

Kumari N., Raghavan S.C. G-quadruplex DNA structures and their relevance in radioprotection. Biochim Biophys Acta Gen Subj. 2021; 1865(5): 129857.-DOI: https://doi.org/10.1016/j.bbagen.2021.129857.

Hegazy Y.A., Fernando C.M., Tran E.J. The balancing act of R-loop biology: The good, the bad, and the ugly. J Biol Chem. 2020; 295(4): 905-913.-DOI: https://doi.org/10.1074/jbc.REV119.011353.

Lim J., Laffleur B., Basu U., Yu K. Identification of RNA-DNA hybrids associated with R-Loops at the IgH switch sequence in activated B cells. Methods Mol Biol. 2022; 2528: 55-66.-DOI: https://doi.org/10.1007/978-1-0716-2477-7_5.

Liu D., Lieber M.R. The mechanisms of human lymphoid chromosomal translocations and their medical relevance. Crit Rev Biochem Mol Biol. 2022; 57(3): 227-243.-DOI: https://doi.org/10.1080/10409238.2021.2004576.

Chi X., Li Y., Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology. 2020; 160(3): 233-247.-DOI: https://doi.org/10.1111/imm.13176.

Rush J.S., Fugmann S.D., Schatz D.G. Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination. Int Immunol. 2004; 16(4): 549-557.-DOI: https://doi.org/10.1093/intimm/dxh057.

Jaiswal A., Roy R., Tamrakar A., et al. Activation-induced cytidine deaminase an antibody diversification enzyme interacts with chromatin modifier UBN1 in B-cells. Sci Rep. 2023; 13(1): 19615.-DOI: https://doi.org/10.1038/s41598-023-46448-7.

Bello A., Müller A., Hirth G., et al. Cell cycle-mediated regulation of secondary ig diversification. J Immunol. 2023; 210(10): 1508-1518.-DOI: https://doi.org/10.4049/jimmunol.2100880.

Bello A., Hirth G., Voigt S., et al. Mechanism and regulation of secondary immunoglobulin diversification. Cell Cycle. 2023; 22(18): 2070-2087.-DOI: https://doi.org/10.1080/15384101.2023.2275397.

Rosin L.F., Crocker O., Isenhart R.L., et al. Chromosome territory formation attenuates the translocation potential of cells. Elife. 2019; 8: e49553.-DOI: https://doi.org/10.7554/eLife.49553.

Lingg L., Rottenberg S., Francica P. Meiotic genes and DNA double strand break repair in cancer. Front Genet. 2022; 13: 831620.-DOI: https://doi.org/10.3389/fgene.2022.831620.

Chudakov D.M., Matz M.V., Lukyanov S., Lukyanov K.A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010; 90(3): 1103-1163.-DOI: https://doi.org/10.1152/physrev.00038.2009.

Zhang Z., Rong X., Xie T., et al. Fluorogenic CRISPR for genomic DNA imaging. Nat Commun. 2024; 15(1): 934.-DOI: https://doi.org/10.1038/s41467-024-45163-9.

Streb P., Kowarz E., Benz T., et al. How chromosomal translocations arise to cause cancer: Gene proximity, trans-splicing, and DNA end joining. iScience. 2023; 26(6): 106900.-DOI: https://doi.org/10.1016/j.isci.2023.106900.

Panagopoulos I., Heim S. Neoplasia-associated chromosome translocations resulting in gene truncation. Cancer Genomics Proteomics. 2022; 19(6): 647-672.-DOI: https://doi.org/10.21873/cgp.20349.

Tripathi S., Shirnekhi H.K., Gorman S.D., et al. Defining the condensate landscape of fusion oncoproteins. Nat Commun. 2023;14(1):6008.-DOI: https://doi.org/10.1038/s41467-023-41655-2.

Mitelman F., Johansson B., Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007; 7(4): 233-245.-DOI: https://doi.org/10.1038/nrc2091.

Taniue K., Akimitsu N. Fusion genes and RNAs in cancer development. Noncoding RNA. 2021; 7(1): 10.-DOI: https://doi.org/10.3390/ncrna7010010.

Gao Q., Liang W.W., Foltz S.M., et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018; 23(1): 227-238.e3.-DOI: https://doi.org/10.1016/j.celrep.2018.03.050.

Lizana L., Schwartz Y.B. The scales, mechanisms, and dynamics of the genome architecture. Sci Adv. 2024; 10(15): eadm8167.-DOI: https://doi.org/10.1126/sciadv.adm8167.

Xing P., Liu H., Xiao W., et al. The fusion gene LRP1-SNRNP25 drives invasion and migration by activating the pJNK/37LRP/MMP2 signaling pathway in osteosarcoma. Cell Death Discov. 2024; 10(1): 198.-DOI: https://doi.org/10.1038/s41420-024-01962-z.

Tate J.G., Bamford S., Jubb H.C., et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019; 47(D1): D941-D947.-DOI: https://doi.org/10.1093/nar/gky1015.

Quintás-Cardama A., Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009; 113(8): 1619-1630.-DOI: https://doi.org/10.1182/blood-2008-03-144790.

Wafa A., Moassass F., Liehr T., et al. Acute promyelocytic leukemia with the translocation t(15;17)(q22;q21) associated with t(1;2)(q42~43;q11.2~12): a case report. J Med Case Rep. 2016; 10: 203.-DOI: https://doi.org/10.1186/s13256-016-0982-8.

Kamran S., Awan S.A., Ahmad K.N., Iqbal Y. Acute myeloid leukemia with t(8;21)(q22;q22) and trisomy 4: a rare occurrence in a female child. Cureus. 2019; 11(1): e3885.-DOI: https://doi.org/10.7759/cureus.3885.

Chi Y., Lindgren V., Quigley S., Gaitonde S. Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia: an overview. Arch Pathol Lab Med. 2008; 132(11): 1835-1837.-DOI: https://doi.org/10.5858/132.11.1835.

Desmaze C., Brizard F., Turc-Carel C., et al. Multiple chromosomal mechanisms generate an EWS/FLI1 or an EWS/ERG fusion gene in Ewing tumors. Cancer Genet Cytogenet. 1997; 97(1): 12-19.-DOI: https://doi.org/10.1016/s0165-4608(96)00326-3.

Kawai A., Woodruff J., Healey J.H., et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998; 338(3): 153-160.-DOI: https://doi.org/10.1056/NEJM199801153380303.

Pearson J.D., Lee J.K., Bacani J.T., et al. NPM-ALK: The prototypic member of a family of oncogenic fusion tyrosine kinases. J Signal Transduct. 2012; 2012: 123253.-DOI: https://doi.org/10.1155/2012/123253.

Wai D.H., Knezevich S.R., Lucas T., et al. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene. 2000; 19(7): 906-915.-DOI: https://doi.org/10.1038/sj.onc.1203396.

Ross T.S., Bernard O.A., Berger R., Gilliland D.G. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood. 1998; 91(12): 4419-4426.

Lau P.P., Lui P.C., Lau G.T., et al. EWSR1-CREB3L1 gene fusion: a novel alternative molecular aberration of low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2013; 37(5): 734-738.-DOI: https://doi.org/10.1097/PAS.0b013e31827560f8.

Singh D., Chan J.M., Zoppoli P., et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012; 337(6099): 1231-1235.-DOI: https://doi.org/10.1126/science.1220834.

Honeyman J.N., Simon E.P., Robine N., et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science. 2014; 343(6174): 1010-1014.-DOI: https://doi.org/10.1126/science.1249484.

Demichelis F., Fall K., Perner S., et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort [published correction appears in Oncogene. 2007 Aug 16; 26(38): 5692]. Oncogene. 2007; 26(31): 4596-4599.-DOI: https://doi.org/10.1038/sj.onc.1210237.

Kundu M., Liu P.P. Function of the inv(16) fusion gene CBFB-MYH11. Curr Opin Hematol. 2001; 8(4): 201-205.-DOI: https://doi.org/10.1097/00062752-200107000-00004.

Wong D.W., Leung E.L., So K.K., et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009; 115(8): 1723-1733.-DOI: https://doi.org/10.1002/cncr.24181.

Gillyard T., Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. Int Rev Cell Mol Biol. 2021; 364: 111-137.-DOI: https://doi.org/10.1016/bs.ircmb.2021.06.003.

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516.-DOI: https://doi.org/10.1080/01926230701320337.

McCarthy-Leo C., Darwiche F., Tainsky MA. DNA Repair mechanisms, protein interactions and therapeutic targeting of the MRN complex. Cancers (Basel). 2022; 14(21): 5278.-DOI: https://doi.org/10.3390/cancers14215278.

Zhao W., Wiese C., Kwon Y., et al. The BRCA tumor suppressor network in chromosome damage repair by homologous recombination. Annu Rev Biochem. 2019; 88: 221-245.-DOI: https://doi.org/10.1146/annurev-biochem-013118-111058.

Liu H.L., Nan H., Zhao W.W., et al. Phase separation in DNA double-strand break response. Nucleus. 2024; 15(1): 2296243.-DOI: https://doi.org/10.1080/19491034.2023.2296243.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2024