The role of chromosomal translocation in the formation of an extraordinary oncogene
##article.numberofdownloads## 68
##article.numberofviews## 153
pdf (Русский)

Keywords

chromosomal translocation
double-stranded DNA breaks
DNA repair
oncogene
fusion protein
malignant tumors

How to Cite

Polatova, D. S., Guildieva, M. S., Madaminov, A. Y., Savkin, A. V., Nurzhabov, A. I., Asamedinov, N. K., Ibragimova, D. A., & Nasirov, S. K. (2024). The role of chromosomal translocation in the formation of an extraordinary oncogene. Voprosy Onkologii, 70(4), 633–642. https://doi.org/10.37469/0507-3758-2024-70-4-633-642

Abstract

When diagnosing acute leukemia, some types of lymphoma and solid tumors, timely detection of structural chromosomal changes in tumor cells is of great importance for an adequate prognostic assessment and the selection of an effective treatment option. In the human genome, DNA double-strand breaks (DSBs) occur frequently during functional recombinations and as a result of the action of various mutagenic factors. Disruption of DSB transport and interaction with specialized sites of HDR (homology-directed repair) repair activity can lead to nomological joining of chromosome ends. Such aberrant restoration of damaged genome clusters leads to the formation of chromosomal translocations. In addition, disruption of the regulatory capacity of critical recombination activating gene (RAG) and activation-induced deaminase (AID) can lead to the formation of loci with fragile chromatin segments, thereby increasing the likelihood of abnormal chromosome rearrangements. Currently, a large number of chromosomal aberrations have been identified that occur at different frequencies and are associated with a specific tumor variant. However, the patterns of abnormal recombination of genome fragments due to double-strand DNA breaks are still a subject of debate. Understanding the molecular mechanisms of chromosomal translocation may provide the basis for the development of new therapeutic agents against malignant tumors.

https://doi.org/10.37469/0507-3758-2024-70-4-633-642
##article.numberofdownloads## 68
##article.numberofviews## 153
pdf (Русский)

References

Gasparini P., Sozzi G., Pierotti M.A. The role of chromosomal alterations in human cancer development. J Cell Biochem. 2007; 102(2): 320-331.-DOI: https://doi.org/10.1002/jcb.21481.

Sampaio M.M., Santos M.L.C., Marques H.S., et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J Clin Oncol. 2021; 12(2): 69-94.-DOI: https://doi.org/10.5306/wjco.v12.i2.69.

Lomov N.A., Viushkov V.S., Ulianov S.V., et al. Recurrent translocations in topoisomerase inhibitor-related leukemia are determined by the features of DNA breaks rather than by the proximity of the translocating genes. Int J Mol Sci. 2022; 23(17): 9824.-DOI: https://doi.org/10.3390/ijms23179824.

Мустяцэ В. BCR-ABL1-позитивный и BCR-ABL1-негативный острые лимфобластные лейкозы: описание трёх клинических случаев и обзор литературы. Вопросы онкологии. 2023; 69(1), 143-148.-DOI: https://doi.org/10.37469/0507-3758-2023-69-1-143-148. [Musteata V. BCR-ABL1-positive and BCR-ABL1-negative acute lymphoblastic leukaemia: description of three clinical cases and literature review. Voprosy Onkologii = Problems in Oncology. 2023; 69(1): 143-8.-DOI: https://doi.org/10.37469/0507-3758-2023-69-1-143-148. (In Rus)].

Jabbour E., Short N.J., Jain N., et al. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial. Lancet Haematol. 2023; 10(1): e24-e34.-DOI: https://doi.org/10.1016/S2352-3026(22)00319-2.

Qu J., Li S., Yu D. Detection of complex chromosome rearrangements using optical genome mapping. Gene. 2023; 884: 147688.-DOI: https://doi.org/10.1016/j.gene.2023.147688.

Харченко Е., Семиглазова Т., Артемьева А., et al. Прогностическая значимость иммуногистохимических и молекулярно-генетических характеристик диффузной крупноклеточной в-клеточной лимфомы. Вопросы онкологии. 2020; 66(1): 79-89.-DOI: https://doi.org/10.37469/0507-3758-2020-66-1-79-89. [Kharchenko Y., Semiglazova T., Artemeva A., et al. Prognostic impact of immunohistochemical and molecular genetic markers in diffuse large B-cell lymphoma. Voprosy Onkologii = Problems in Oncology. 2020; 66(1): 79-89.-DOI: https://doi.org/10.37469/0507-3758-2020-66-1-79-89. (Rus)].

Ramsden D.A., Nussenzweig A. Mechanisms driving chromosomal translocations: lost in time and space. Oncogene. 2021; 40(25): 4263-4270.-DOI: https://doi.org/10.1038/s41388-021-01856-9.

Yang J.H., Brandão H.B., Hansen A.S. DNA double-strand break end synapsis by DNA loop extrusion. Nat Commun. 2023; 14(1): 1913.-DOI: https://doi.org/10.1038/s41467-023-37583-w.

Lamm N., Rogers S., Cesare A.J. Chromatin mobility and relocation in DNA repair. Trends Cell Biol. 2021; 31(10): 843-855.-DOI: https://doi.org/10.1016/j.tcb.2021.06.002.

Roukos V., Misteli T. The biogenesis of chromosome translocations. Nat Cell Biol. 2014; 16(4): 293-300.-DOI: https://doi.org/10.1038/ncb2941.

Lamm N., Read M.N., Nobis M., et al. Nuclear F-actin counteracts nuclear deformation and promotes fork repair during replication stress. Nat Cell Biol. 2020; 22(12): 1460-1470.-DOI: https://doi.org/10.1038/s41556-020-00605-6.

Ghezraoui H., Piganeau M., Renouf B., et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell. 2014; 55(6): 829-842.DOI: https://doi.org/10.1016/j.molcel.2014.08.002.

Scully R., Panday A., Elango R., Willis N.A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019; 20(11): 698-714.-DOI: https://doi.org/10.1038/s41580-019-0152-0.

Tamizh Selvan G., Venkatachalam P. Ataxia telengectesia protein influences bleomycin-induced DNA damage in human fibroblast cells. Cell Biochem Biophys. 2024.-DOI: https://doi.org/10.1007/s12013-024-01275-z.

Arnould C., Legube G. The secret life of chromosome loops upon DNA double-strand break. J Mol Biol. 2020; 432(3): 724-736.-DOI: https://doi.org/10.1016/j.jmb.2019.07.036.

Stinson B.M., Loparo J.J. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem. 2021; 90: 137-164.-DOI: https://doi.org/10.1146/annurev-biochem-080320-110356.

Stinson B.M., Moreno A.T., Walter J.C., Loparo J.J. A mechanism to minimize errors during non-homologous end joining. Mol Cell. 2020; 77(5): 1080-1091.e8.-DOI: https://doi.org/10.1016/j.molcel.2019.11.018.

Zhao B., Rothenberg E., Ramsden D.A., Lieber M.R. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020; 21(12): 765-781.-DOI: https://doi.org/10.1038/s41580-020-00297-8.

Wright W.D., Shah S.S., Heyer W.D. Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem. 2018; 293(27): 10524-10535.-DOI: https://doi.org/10.1074/jbc.TM118.000372.

Smith B.A.H., Deutzmann A., Correa K.M., et al. MYC-driven synthesis of Siglec ligands is a glycoimmune checkpoint. Proc Natl Acad Sci USA. 2023; 120(11): e2215376120.-DOI: https://doi.org/10.1073/pnas.2215376120.

Nambiar M., Raghavan S.C. Chromosomal translocations among the healthy human population: implications in oncogenesis. Cell Mol Life Sci. 2013; 70(8): 1381-1392.-DOI: https://doi.org/10.1007/s00018-012-1135-x.

Chamba C., Mbulaiteye S.M., Balandya E., Schuh A. Clinical application of circulating cell-free lymphoma DNA for fast and precise diagnosis of Burkitt lymphoma: Precision medicine for sub-Saharan Africa. Camb Prism Precis Med. 2023; 1: e13.-DOI: https://doi.org/10.1017/pcm.2023.1.

Kumari N., Raghavan S.C. G-quadruplex DNA structures and their relevance in radioprotection. Biochim Biophys Acta Gen Subj. 2021; 1865(5): 129857.-DOI: https://doi.org/10.1016/j.bbagen.2021.129857.

Hegazy Y.A., Fernando C.M., Tran E.J. The balancing act of R-loop biology: The good, the bad, and the ugly. J Biol Chem. 2020; 295(4): 905-913.-DOI: https://doi.org/10.1074/jbc.REV119.011353.

Lim J., Laffleur B., Basu U., Yu K. Identification of RNA-DNA hybrids associated with R-Loops at the IgH switch sequence in activated B cells. Methods Mol Biol. 2022; 2528: 55-66.-DOI: https://doi.org/10.1007/978-1-0716-2477-7_5.

Liu D., Lieber M.R. The mechanisms of human lymphoid chromosomal translocations and their medical relevance. Crit Rev Biochem Mol Biol. 2022; 57(3): 227-243.-DOI: https://doi.org/10.1080/10409238.2021.2004576.

Chi X., Li Y., Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology. 2020; 160(3): 233-247.-DOI: https://doi.org/10.1111/imm.13176.

Rush J.S., Fugmann S.D., Schatz D.G. Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination. Int Immunol. 2004; 16(4): 549-557.-DOI: https://doi.org/10.1093/intimm/dxh057.

Jaiswal A., Roy R., Tamrakar A., et al. Activation-induced cytidine deaminase an antibody diversification enzyme interacts with chromatin modifier UBN1 in B-cells. Sci Rep. 2023; 13(1): 19615.-DOI: https://doi.org/10.1038/s41598-023-46448-7.

Bello A., Müller A., Hirth G., et al. Cell cycle-mediated regulation of secondary ig diversification. J Immunol. 2023; 210(10): 1508-1518.-DOI: https://doi.org/10.4049/jimmunol.2100880.

Bello A., Hirth G., Voigt S., et al. Mechanism and regulation of secondary immunoglobulin diversification. Cell Cycle. 2023; 22(18): 2070-2087.-DOI: https://doi.org/10.1080/15384101.2023.2275397.

Rosin L.F., Crocker O., Isenhart R.L., et al. Chromosome territory formation attenuates the translocation potential of cells. Elife. 2019; 8: e49553.-DOI: https://doi.org/10.7554/eLife.49553.

Lingg L., Rottenberg S., Francica P. Meiotic genes and DNA double strand break repair in cancer. Front Genet. 2022; 13: 831620.-DOI: https://doi.org/10.3389/fgene.2022.831620.

Chudakov D.M., Matz M.V., Lukyanov S., Lukyanov K.A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010; 90(3): 1103-1163.-DOI: https://doi.org/10.1152/physrev.00038.2009.

Zhang Z., Rong X., Xie T., et al. Fluorogenic CRISPR for genomic DNA imaging. Nat Commun. 2024; 15(1): 934.-DOI: https://doi.org/10.1038/s41467-024-45163-9.

Streb P., Kowarz E., Benz T., et al. How chromosomal translocations arise to cause cancer: Gene proximity, trans-splicing, and DNA end joining. iScience. 2023; 26(6): 106900.-DOI: https://doi.org/10.1016/j.isci.2023.106900.

Panagopoulos I., Heim S. Neoplasia-associated chromosome translocations resulting in gene truncation. Cancer Genomics Proteomics. 2022; 19(6): 647-672.-DOI: https://doi.org/10.21873/cgp.20349.

Tripathi S., Shirnekhi H.K., Gorman S.D., et al. Defining the condensate landscape of fusion oncoproteins. Nat Commun. 2023;14(1):6008.-DOI: https://doi.org/10.1038/s41467-023-41655-2.

Mitelman F., Johansson B., Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007; 7(4): 233-245.-DOI: https://doi.org/10.1038/nrc2091.

Taniue K., Akimitsu N. Fusion genes and RNAs in cancer development. Noncoding RNA. 2021; 7(1): 10.-DOI: https://doi.org/10.3390/ncrna7010010.

Gao Q., Liang W.W., Foltz S.M., et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018; 23(1): 227-238.e3.-DOI: https://doi.org/10.1016/j.celrep.2018.03.050.

Lizana L., Schwartz Y.B. The scales, mechanisms, and dynamics of the genome architecture. Sci Adv. 2024; 10(15): eadm8167.-DOI: https://doi.org/10.1126/sciadv.adm8167.

Xing P., Liu H., Xiao W., et al. The fusion gene LRP1-SNRNP25 drives invasion and migration by activating the pJNK/37LRP/MMP2 signaling pathway in osteosarcoma. Cell Death Discov. 2024; 10(1): 198.-DOI: https://doi.org/10.1038/s41420-024-01962-z.

Tate J.G., Bamford S., Jubb H.C., et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019; 47(D1): D941-D947.-DOI: https://doi.org/10.1093/nar/gky1015.

Quintás-Cardama A., Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009; 113(8): 1619-1630.-DOI: https://doi.org/10.1182/blood-2008-03-144790.

Wafa A., Moassass F., Liehr T., et al. Acute promyelocytic leukemia with the translocation t(15;17)(q22;q21) associated with t(1;2)(q42~43;q11.2~12): a case report. J Med Case Rep. 2016; 10: 203.-DOI: https://doi.org/10.1186/s13256-016-0982-8.

Kamran S., Awan S.A., Ahmad K.N., Iqbal Y. Acute myeloid leukemia with t(8;21)(q22;q22) and trisomy 4: a rare occurrence in a female child. Cureus. 2019; 11(1): e3885.-DOI: https://doi.org/10.7759/cureus.3885.

Chi Y., Lindgren V., Quigley S., Gaitonde S. Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia: an overview. Arch Pathol Lab Med. 2008; 132(11): 1835-1837.-DOI: https://doi.org/10.5858/132.11.1835.

Desmaze C., Brizard F., Turc-Carel C., et al. Multiple chromosomal mechanisms generate an EWS/FLI1 or an EWS/ERG fusion gene in Ewing tumors. Cancer Genet Cytogenet. 1997; 97(1): 12-19.-DOI: https://doi.org/10.1016/s0165-4608(96)00326-3.

Kawai A., Woodruff J., Healey J.H., et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998; 338(3): 153-160.-DOI: https://doi.org/10.1056/NEJM199801153380303.

Pearson J.D., Lee J.K., Bacani J.T., et al. NPM-ALK: The prototypic member of a family of oncogenic fusion tyrosine kinases. J Signal Transduct. 2012; 2012: 123253.-DOI: https://doi.org/10.1155/2012/123253.

Wai D.H., Knezevich S.R., Lucas T., et al. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene. 2000; 19(7): 906-915.-DOI: https://doi.org/10.1038/sj.onc.1203396.

Ross T.S., Bernard O.A., Berger R., Gilliland D.G. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood. 1998; 91(12): 4419-4426.

Lau P.P., Lui P.C., Lau G.T., et al. EWSR1-CREB3L1 gene fusion: a novel alternative molecular aberration of low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2013; 37(5): 734-738.-DOI: https://doi.org/10.1097/PAS.0b013e31827560f8.

Singh D., Chan J.M., Zoppoli P., et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012; 337(6099): 1231-1235.-DOI: https://doi.org/10.1126/science.1220834.

Honeyman J.N., Simon E.P., Robine N., et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science. 2014; 343(6174): 1010-1014.-DOI: https://doi.org/10.1126/science.1249484.

Demichelis F., Fall K., Perner S., et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort [published correction appears in Oncogene. 2007 Aug 16; 26(38): 5692]. Oncogene. 2007; 26(31): 4596-4599.-DOI: https://doi.org/10.1038/sj.onc.1210237.

Kundu M., Liu P.P. Function of the inv(16) fusion gene CBFB-MYH11. Curr Opin Hematol. 2001; 8(4): 201-205.-DOI: https://doi.org/10.1097/00062752-200107000-00004.

Wong D.W., Leung E.L., So K.K., et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009; 115(8): 1723-1733.-DOI: https://doi.org/10.1002/cncr.24181.

Gillyard T., Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. Int Rev Cell Mol Biol. 2021; 364: 111-137.-DOI: https://doi.org/10.1016/bs.ircmb.2021.06.003.

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35(4): 495-516.-DOI: https://doi.org/10.1080/01926230701320337.

McCarthy-Leo C., Darwiche F., Tainsky MA. DNA Repair mechanisms, protein interactions and therapeutic targeting of the MRN complex. Cancers (Basel). 2022; 14(21): 5278.-DOI: https://doi.org/10.3390/cancers14215278.

Zhao W., Wiese C., Kwon Y., et al. The BRCA tumor suppressor network in chromosome damage repair by homologous recombination. Annu Rev Biochem. 2019; 88: 221-245.-DOI: https://doi.org/10.1146/annurev-biochem-013118-111058.

Liu H.L., Nan H., Zhao W.W., et al. Phase separation in DNA double-strand break response. Nucleus. 2024; 15(1): 2296243.-DOI: https://doi.org/10.1080/19491034.2023.2296243.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024