Малые молекулы как перспективные регуляторы уровня сорцина при онкогенезе
Загрузок: 6
Просмотров: 17
pdf

Ключевые слова

сорцин
малые молекулы
множественная лекарственная устойчивость
онкогенез
таргетная мишень
лиганд

Как цитировать

Косова, А. Д., Сербун , П. Г., Снетков , П. П., Миронова, Е. С., Морозкина , С. Н., Балазовская , С. М., & Кветной , И. М. (2025). Малые молекулы как перспективные регуляторы уровня сорцина при онкогенезе. Вопросы онкологии, 71(4), OF–2227. https://doi.org/10.37469/0507-3758-2025-71-4-OF-2227

Аннотация

Онкологические заболевания стабильно занимают позицию наиболее распространенных в мире с высокой смертностью. Неэффективность применяемых средств лекарственной терапии обусловлена множественной лекарственной устойчивостью (МЛУ) — способностью злокачественных клеток сохранять жизнеспособность в ответ на воздействие химиотерапии. Многие исследования доказывают, что важную роль в прогрессировании опухоли и развитии МЛУ играет кальций-связывающий белок сорцин, способный регулировать многие опухолевые процессы. Сорцин сверхэкспрессируется в раковых клетках и способствует их выживаемости. Снижение экспрессии сорцина может привести к усилению химиотерапевтического эффекта при воздействии на опухоль. В связи с этим актуален поиск регуляторов, лигандов сорцина, в частности малых молекул, среди которых можно выделить дигидромирицетин, ондансетрон, тетрандрин, PH II-7, кальцитриол, триптолид и др. Таким образом, сорцин является потенциальной молекулой-мишенью для разработки новых методов, направленных на диагностику и таргетную терапию онкологических заболеваний. В обзоре рассмотрены структура и функции сорцина, его роль в развитии лекарственной устойчивости и онкогенезе, а также потенциальные регуляторы — малые молекулы, ингибирующие экспрессию сорцина.

https://doi.org/10.37469/0507-3758-2025-71-4-OF-2227
Загрузок: 6
Просмотров: 17
pdf

Библиографические ссылки

Catalano A., Iacopetta D., Ceramella J., et al. Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. Molecules. 2022; 27(3): 616.-DOI: 10.3390/molecules27030616.-URL: https://www.mdpi.com/1420-3049/27/3/616.

Zhou X., Wu X., Chen B. Sorcin: a potential novel target in therapies of cancers. CMAR. 2019; 11: 7327-36.-DOI: 10.2147/CMAR.S208677.-URL: https://www.dovepress.com/sorcin-a-novel-potential-target-in-therapies-of-cancers-peer-reviewed-article-CMAR.

Crans D., Henry L., Cardiff G., Posner B. 8. Developing vanadium as antidiabetic or anticancer drug: a clinical and historical perspective. In: Carver P. (ed.) Essential metals in medicine: therapeutic use and toxicity of metal ions in the clinic. De Gruyter. 2019; 203-230.-DOI: 10.1515/9783110527872-008.-URL: https://www.degruyter.com/document/doi/10.1515/9783110527872-008/html.-ISBN: 978-3-11-052787-2.

Lewit-Bentley A., Réty S. EF-hand calcium-binding proteins. Current Opinion in Structural Biology. 2000; 10(6): 637-43.-DOI: 10.1016/S0959-440X(00)00142-1.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0959440X00001421.

Kawasaki H., Nakayama S., Kretsinger R.H. Classification and evolution of EF-hand proteins. Biometals. 1998; 11(4): 277-95.-DOI: 10.1023/A:1009282307967.-URL: http://link.springer.com/10.1023/A:1009282307967.

Ilari A., Fiorillo A., Poser E., et al. Structural basis of Sorcin-mediated calcium-dependent signal transduction. Sci Rep. 2015; 5(1): 16828.-DOI: 10.1038/srep16828.-URL: https://www.nature.com/articles/srep16828.

Colotti G., Zamparelli C., Verzili D., et al. The W105G and W99G Sorcin Mutants Demonstrate the Role of the D Helix in the Ca2+ -Dependent interaction with annexin VII and the cardiac ryanodine receptor. Biochemistry. 2006; 45(41): 12519-29.-DOI: 10.1021/bi060416a.-URL: https://pubs.acs.org/doi/10.1021/bi060416a.

Battista T., Fiorillo A., Chiarini V., et al. Roles of sorcin in drug resistance in cancer: one protein, many mechanisms, for a novel potential anticancer drug target. Cancers. 2020; 12(4): 887.-DOI: 10.3390/cancers12040887.-URL: https://www.mdpi.com/2072-6694/12/4/887.

Genovese I., Ilari A., Battista T., et al. Molecular bases of Sorcin-dependent resistance to chemotherapeutic agents. CDR. 2018.-DOI: 10.20517/cdr.2018.10.-URL: https://www.oaepublish.com/articles/cdr.2018.10.

Kawakami M., Nakamura T., Okamura N., et al. Knock-down of sorcin induces up-regulation of MDR1 in HeLa cells. Biol Pharm Bull. 2007; 30(6): 1065-73.-DOI: 10.1248/bpb.30.1065.-URL: http://www.jstage.jst.go.jp/article/bpb/30/6/30_6_1065/_article.

Bouchelouche P., Friche E., Sehested M., et al. Cytosolic free Ca2+ in daunorubicin and vincristine resistant Ehrlich ascites tumor cells. Drug accumulation is independent of intracellular Ca2+ changes. Biochem Pharmacol. 1991; 41(2): 243-53.-DOI: 0.1016/0006-2952(91)90483-l1.-URL: https://pubmed.ncbi.nlm.nih.gov/1899193/.

Fowler M.R., Colotti G., Chiancone E., et al. Complex modulation of L-type Ca2+ current inactivation by sorcin in isolated rabbit cardiomyocytes. Pflugers Arch - Eur J Physiol. 2009; 457(5): 1049-60.-DOI: 10.1007/s00424-008-0575-5.-URL: http://link.springer.com/10.1007/s00424-008-0575-5.

Suarez J., McDonough P.M., Scott B.T., et al. Sorcin modulates mitochondrial Ca2+ handling and reduces apoptosis in neonatal rat cardiac myocytes. Am J Physiol Cell Physiol. 2013; 304(3): C248-56.-DOI: 10.1152/ajpcell.00039.2012.-URL: https://journals.physiology.org/doi/10.1152/ajpcell.00039.2012.

Ranum P.T., Goodwin A.T., Yoshimura H., et al. Insights into the biology of hearing and deafness revealed by single-cell RNA sequencing. Cell Reports. 2019; 26(11): 3160-3171.e3.-DOI: 10.1016/j.celrep.2019.02.053.-URL: https://linkinghub.elsevier.com/retrieve/pii/S2211124719302323.

Rueda A., Song M., Toro L., et al. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells. Physiol J. 2006; 576(3): 887-901.-DOI: 10.1113/jphysiol.2006.113951.-URL: https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.113951.

Andreev V.P., Petyuk V.A., Brewer H.M., et al. Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res. 2012; 11(6): 3053-67.-DOI: 10.1021/pr3001546.-URL: https://pubs.acs.org/doi/10.1021/pr3001546.

Tsuji T., Shiozaki A., Kohno R., et al. Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem Res. 2002; 27(10): 1245-53.-DOI: 10.1023/A:1020941929414.-URL: http://link.springer.com/10.1023/A:1020941929414.

Umoh M.E., Dammer E.B., Dai J., et al. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol Med. 2018; 10(1): 48-62.-DOI: 10.15252/emmm.201708202.-URL: https://www.embopress.org/doi/10.15252/emmm.201708202.

Pack-Chung E., Meyers M.B., Pettingell W.P., et al. Presenilin 2 Interacts with Sorcin, a Modulator of the Ryanodine Receptor. J Biol Chem. 2000; 275(19): 14440-5.-DOI: 10.1074/jbc.M909882199.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0021925819806191.

Woods W.S., Boettcher J.M., Zhou D.H., et al. Conformation-specific binding of alpha-synuclein to novel protein partners detected by phage display and NMR spectroscopy. J Biol Chem. 2007; 282(47): 34555-67.-DOI: 10.1074/jbc.M705283200.-URL: https://pubmed.ncbi.nlm.nih.gov/17893145/.

Padar S., van Breemen C., Thomas D.W., et al. Differential regulation of calcium homeostasis in adenocarcinoma cell line A549 and its Taxol-resistant subclone. British J Pharmacology. 2004; 142(2): 305-16.-DOI: 10.1038/sj.bjp.0705755.-URL: https://bpspubs.onlinelibrary.wiley.com/doi/10.1038/sj.bjp.0705755.

Gupta K., Sirohi V.K., Kumari S., et al. Sorcin is involved during embryo implantation via activating VEGF/PI3K/Akt pathway in mice. J Mol Endocrinol. 2018; 60(2): 119-32.-DOI: 10.1530/JME-17-0153.-URL: https://jme.bioscientifica.com/view/journals/jme/60/2/JME-17-0153.xml.

Yamagishi N., Nakao R., Kondo R., et al. Increased expression of sorcin is associated with multidrug resistance in leukemia cells via up-regulation of MDR1 expression through cAMP response element-binding protein. Biochem Biophys Res Commun. 2014; 448(4): 430-6.-DOI: 10.1016/j.bbrc.2014.04.125.

Deng L., Su T., Leng A., et al. Upregulation of soluble resistance-related calcium-binding protein (sorcin) in gastric cancer. Med Oncol. 2010; 27(4): 1102-8.-DOI: 10.1007/s12032-009-9342-5.-URL: https://pubmed.ncbi.nlm.nih.gov/24796664/.

Zhou Y., Xu Y., Tan Y., et al. Sorcin, an important gene associated with multidrug-resistance in human leukemia cells. Leuk Res. 2006; 30(4): 469-76.-DOI: 10.1016/j.leukres.2005.08.024.-URL: https://pubmed.ncbi.nlm.nih.gov/16213583/.

Zhang H., Hu S., Sanches J.G.P., et al. Sorcin promotes proliferation of hepatocellular carcinoma by regulating VEGFA/B via PI3K pathway. J Physiol Biochem. 2024; 80(2): 381-92.-DOI: 10.1007/s13105-024-01011-4.-URL: https://link.springer.com/10.1007/s13105-024-01011-4.

Li Y., Tian M., Pires Sanches J.G., et al. Sorcin inhibits mitochondrial apoptosis by interacting with STAT3 via NF-κB pathway. IJMS. 2024; 25(13): 7206.-DOI: 10.3390/ijms25137206.-URL: https://www.mdpi.com/1422-0067/25/13/7206.

Zhang J., Chen J., Shan B., et al. Clinical Significance and prognostic value of human soluble resistance-related calcium-binding protein: a pan-cancer analysis. Front Med. 2022; 8: 752619.-DOI: 10.3389/fmed.2021.752619.-URL: https://www.frontiersin.org/articles/10.3389/fmed.2021.752619/full.

Hu Y., Li S., Yang M., et al. Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Res Treat. 2014; 143(2): 287-99.-DOI: 10.1007/s10549-013-2809-2.-URL: https://pubmed.ncbi.nlm.nih.gov/24337682/.

Lei X., Liang Y., Chen J., et al. Retraction note: sorcin predicts poor prognosis and promotes metastasis by facilitating epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2018; 8(1): 11857.-DOI: 10.1038/s41598-018-29892-8.-URL: https://www.nature.com/articles/s41598-018-29892-8.

Colotti G., Poser E., Fiorillo A., et al. Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells. molecules. 2014; 19(9): 13976-89.-DOI: 10.3390/molecules190913976.-URL: https://www.mdpi.com/1420-3049/19/9/13976.

Genovese I., Fiorillo A., Ilari A., et al. Binding of doxorubicin to Sorcin impairs cell death and increases drug resistance in cancer cells. Cell Death Dis. 2017; 8(7): e2950-e2950.-DOI: 10.1038/cddis.2017.342.-URL: https://www.nature.com/articles/cddis2017342.

He Q., Zhang G., Hou D., et al. Overexpression of sorcin results in multidrug resistance in gastric cancer cells with up-regulation of P-gp. Oncol Rep. 2011; 25(1): 237-43.-DOI: 10.3892/or-00001066 PMID: 21109982.

Hu Y., Cheng X., Li S., et al. Inhibition of sorcin reverses multidrug resistance of K562/A02 cells and MCF-7/A02 cells via regulating apoptosis-related proteins. Cancer Chemother Pharmacol. 2013; 72(4): 789-98.-DOI: 10.1007/s00280-013-2254-2.-URL: https://pubmed.ncbi.nlm.nih.gov/24013575/.

Liu X., Chen L., Feng B., Liu G. Reversing effect of sorcin in the drug resistance of human nasopharyngeal carcinoma. Anat Rec (Hoboken). 2014; 297(2): 215-21.-DOI: 10.1002/ar.22832.-URL: https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ar.22832.

Parekh H.K., Deng H.B., Choudhary K., et al. Overexpression of sorcin, a calcium-binding protein, induces a low level of paclitaxel resistance in human ovarian and breast cancer cells. Biochem Pharmacol. 2002; 63(6): 1149-58.-DOI: 10.1016/s0006-2952(02)00850-x.-URL: https://pubmed.ncbi.nlm.nih.gov/11931848/.

Ali R., Huang Y., Maher S.E., et al. miR-1 mediated suppression of Sorcin regulates myocardial contractility through modulation of Ca2+ signaling. J Mol Cell Cardiol. 2012; 52(5): 1027-37.-DOI: 10.1016/j.yjmcc.2012.01.020.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0022282812000533.

Bartel D.P. MicroRNAs. Cell. 2004; 116(2): 281-97.-DOI: 10.1016/S0092-8674(04)00045-5.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0092867404000455.

Li E.Y., Zhao P.J., Jian J., et al. Vitamin B1 and B12 mitigates neuron apoptosis in cerebral palsy by augmenting BDNF expression through MALAT1/miR-1 axis. Cell Cycle. 2019; 18(21): 2849-59.-DOI: 10.1080/15384101.2019.1638190.-URL: https://www.tandfonline.com/doi/full/10.1080/15384101.2019.1638190.

Lv L., Zheng N., Zhang L., et al. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice. Eur J Pharmacol. 2020; 881: 173131.-DOI: 10.1016/j.ejphar.2020.173131.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0014299920302235.

Deng L., Tan T., Zhang T., et al. miR 1 reverses multidrug resistance in gastric cancer cells via downregulation of sorcin through promoting the accumulation of intracellular drugs and apoptosis of cells. Int J Oncol. 2019.-DOI: 10.3892/ijo.2019.4831.-URL: http://www.spandidos-publications.com/10.3892/ijo.2019.4831

Sun Y., Wang C., Meng Q., et al. Targeting P‐glycoprotein and SORCIN: Dihydromyricetin strengthens anti‐proliferative efficiency of adriamycin via MAPK/ERK and Ca2+ ‐mediated apoptosis pathways in MCF‐7/ADR and K562/ADR. J Cell Physiol. 2018; 233(4): 3066-79.-DOI: 10.1002/jcp.26087.-URL: https://onlinelibrary.wiley.com/doi/10.1002/jcp.26087.

Sun Y., Liu W., Wang C., et al. Combination of dihydromyricetin and ondansetron strengthens antiproliferative efficiency of adriamycin in K562/ADR through downregulation of SORCIN: A new strategy of inhibiting P‐glycoprotein. J Cell Physiol. 2019; 234(4): 3685-96.-DOI: 10.1002/jcp.27141.-URL: https://onlinelibrary.wiley.com/doi/10.1002/jcp.27141.

Peng H., Yuan X., Luo S., et al. Reactive oxygen species contribute to TRAIL receptors upregulation; the mechanism for PH II-7 augmenting TRAIL induced apoptosis in leukemia cells. Eur J Pharmacol. 2015; 746: 344-52.-DOI: 10.1016/j.ejphar.2014.10.028.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0014299914007353.

Wood R.J., Tchack L., Angelo G., et al. DNA microarray analysis of vitamin D-induced gene expression in a human colon carcinoma cell line. Physiol Genomics. 2004; 17(2): 122-9.-DOI: 10.1152/physiolgenomics.00002.2003.-URL: https://www.physiology.org/doi/10.1152/physiolgenomics.00002.2003.

Li J., Chen B.A., Zhu M.S., et al. Influence of tetrandrine on SORCIN gene expression in K562/A02 cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2008; 16(1): 65-9.-DOI: 10.3736/jcim20080916.

Luan F., He X., Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol. 2020; 72(11): 1491-512.-DOI: 10.1111/jphp.13339.-URL: https://academic.oup.com/jpp/article/72/11/1491/6132645.

Dabaghi M., Rahgozar S., Moshtaghian J., et al. Overexpression of SORCIN is a Prognostic Biomarker for Multidrug-Resistant Pediatric Acute Lymphoblastic Leukemia and Correlates with Upregulated MDR1 /P-gp. Genet Test Mol Biomarkers. 2016; 20(9): 516-21.-DOI: 10.1089/gtmb.2016.0031.-URL: http://www.liebertpub.com/doi/10.1089/gtmb.2016.0031.

Noel P., Von Hoff D.D., Saluja A.K., et al. Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 2019; 40(5): 327-41.-DOI: 10.1016/j.tips.2019.03.002.-URL: https://pubmed.ncbi.nlm.nih.gov/30975442/. Liu H., Shen M., Zhao D., et al. The effect of triptolide-loaded exosomes on the proliferation and apoptosis of human ovarian cancer SKOV3 cells. Biomed Res Int. 2019; 2019: 2595801.-DOI: 10.1155/2019/2595801.-URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556367/.

Wang C., Xu X., Zhang P., et al. Lipid-coated albumin-paclitaxel nanoparticles loaded with sorcin-siRNA reverse cancer chemoresistance via restoring intracellular calcium ion homeostasis. J Nanobiotechnology. 2022; 20(1): 319.-DOI: 10.1186/s12951-022-01487-6.-URL: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-022-01487-6.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2025