Abstract
Cancer is consistently ranked as the most common disease in the world with a high mortality rate. The ineffectiveness of drug therapy is due to multiple drug resistance (MDR) - the ability of malignant cells to remain viable in response to chemotherapy. Many studies have shown that the calcium-binding protein sorcin, which can regulate many tumor processes, plays an important role in tumor progression and MDR development. Sorcin is overexpressed in cancer cells and contributes to their survival. Reduced sorcin expression may lead to enhanced chemotherapeutic effects in tumors. In this regard, the search for regulators, ligands of sorcin, especially small molecules such as dihydromyricetin, ondansetron, tetrandrin, PH II-7, calcitriol, triptolide, etc. is relevant. This makes sorcin a potential target molecule for the development of new methods for the diagnosis and targeted therapy of cancer. This review discusses the structure and function of sorcin, its role in the development of drug resistance and oncogenesis, and potential regulators - small molecules that inhibit sorcin expression.
References
Catalano A., Iacopetta D., Ceramella J., et al. Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. Molecules. 2022; 27(3): 616.-DOI: 10.3390/molecules27030616.-URL: https://www.mdpi.com/1420-3049/27/3/616.
Zhou X., Wu X., Chen B. Sorcin: a potential novel target in therapies of cancers. CMAR. 2019; 11: 7327-36.-DOI: 10.2147/CMAR.S208677.-URL: https://www.dovepress.com/sorcin-a-novel-potential-target-in-therapies-of-cancers-peer-reviewed-article-CMAR.
Crans D., Henry L., Cardiff G., Posner B. 8. Developing vanadium as antidiabetic or anticancer drug: a clinical and historical perspective. In: Carver P. (ed.) Essential metals in medicine: therapeutic use and toxicity of metal ions in the clinic. De Gruyter. 2019; 203-230.-DOI: 10.1515/9783110527872-008.-URL: https://www.degruyter.com/document/doi/10.1515/9783110527872-008/html.-ISBN: 978-3-11-052787-2.
Lewit-Bentley A., Réty S. EF-hand calcium-binding proteins. Current Opinion in Structural Biology. 2000; 10(6): 637-43.-DOI: 10.1016/S0959-440X(00)00142-1.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0959440X00001421.
Kawasaki H., Nakayama S., Kretsinger R.H. Classification and evolution of EF-hand proteins. Biometals. 1998; 11(4): 277-95.-DOI: 10.1023/A:1009282307967.-URL: http://link.springer.com/10.1023/A:1009282307967.
Ilari A., Fiorillo A., Poser E., et al. Structural basis of Sorcin-mediated calcium-dependent signal transduction. Sci Rep. 2015; 5(1): 16828.-DOI: 10.1038/srep16828.-URL: https://www.nature.com/articles/srep16828.
Colotti G., Zamparelli C., Verzili D., et al. The W105G and W99G Sorcin Mutants Demonstrate the Role of the D Helix in the Ca2+ -Dependent interaction with annexin VII and the cardiac ryanodine receptor. Biochemistry. 2006; 45(41): 12519-29.-DOI: 10.1021/bi060416a.-URL: https://pubs.acs.org/doi/10.1021/bi060416a.
Battista T., Fiorillo A., Chiarini V., et al. Roles of sorcin in drug resistance in cancer: one protein, many mechanisms, for a novel potential anticancer drug target. Cancers. 2020; 12(4): 887.-DOI: 10.3390/cancers12040887.-URL: https://www.mdpi.com/2072-6694/12/4/887.
Genovese I., Ilari A., Battista T., et al. Molecular bases of Sorcin-dependent resistance to chemotherapeutic agents. CDR. 2018.-DOI: 10.20517/cdr.2018.10.-URL: https://www.oaepublish.com/articles/cdr.2018.10.
Kawakami M., Nakamura T., Okamura N., et al. Knock-down of sorcin induces up-regulation of MDR1 in HeLa cells. Biol Pharm Bull. 2007; 30(6): 1065-73.-DOI: 10.1248/bpb.30.1065.-URL: http://www.jstage.jst.go.jp/article/bpb/30/6/30_6_1065/_article.
Bouchelouche P., Friche E., Sehested M., et al. Cytosolic free Ca2+ in daunorubicin and vincristine resistant Ehrlich ascites tumor cells. Drug accumulation is independent of intracellular Ca2+ changes. Biochem Pharmacol. 1991; 41(2): 243-53.-DOI: 0.1016/0006-2952(91)90483-l1.-URL: https://pubmed.ncbi.nlm.nih.gov/1899193/.
Fowler M.R., Colotti G., Chiancone E., et al. Complex modulation of L-type Ca2+ current inactivation by sorcin in isolated rabbit cardiomyocytes. Pflugers Arch - Eur J Physiol. 2009; 457(5): 1049-60.-DOI: 10.1007/s00424-008-0575-5.-URL: http://link.springer.com/10.1007/s00424-008-0575-5.
Suarez J., McDonough P.M., Scott B.T., et al. Sorcin modulates mitochondrial Ca2+ handling and reduces apoptosis in neonatal rat cardiac myocytes. Am J Physiol Cell Physiol. 2013; 304(3): C248-56.-DOI: 10.1152/ajpcell.00039.2012.-URL: https://journals.physiology.org/doi/10.1152/ajpcell.00039.2012.
Ranum P.T., Goodwin A.T., Yoshimura H., et al. Insights into the biology of hearing and deafness revealed by single-cell RNA sequencing. Cell Reports. 2019; 26(11): 3160-3171.e3.-DOI: 10.1016/j.celrep.2019.02.053.-URL: https://linkinghub.elsevier.com/retrieve/pii/S2211124719302323.
Rueda A., Song M., Toro L., et al. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells. Physiol J. 2006; 576(3): 887-901.-DOI: 10.1113/jphysiol.2006.113951.-URL: https://physoc.onlinelibrary.wiley.com/doi/10.1113/jphysiol.2006.113951.
Andreev V.P., Petyuk V.A., Brewer H.M., et al. Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res. 2012; 11(6): 3053-67.-DOI: 10.1021/pr3001546.-URL: https://pubs.acs.org/doi/10.1021/pr3001546.
Tsuji T., Shiozaki A., Kohno R., et al. Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem Res. 2002; 27(10): 1245-53.-DOI: 10.1023/A:1020941929414.-URL: http://link.springer.com/10.1023/A:1020941929414.
Umoh M.E., Dammer E.B., Dai J., et al. A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol Med. 2018; 10(1): 48-62.-DOI: 10.15252/emmm.201708202.-URL: https://www.embopress.org/doi/10.15252/emmm.201708202.
Pack-Chung E., Meyers M.B., Pettingell W.P., et al. Presenilin 2 Interacts with Sorcin, a Modulator of the Ryanodine Receptor. J Biol Chem. 2000; 275(19): 14440-5.-DOI: 10.1074/jbc.M909882199.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0021925819806191.
Woods W.S., Boettcher J.M., Zhou D.H., et al. Conformation-specific binding of alpha-synuclein to novel protein partners detected by phage display and NMR spectroscopy. J Biol Chem. 2007; 282(47): 34555-67.-DOI: 10.1074/jbc.M705283200.-URL: https://pubmed.ncbi.nlm.nih.gov/17893145/.
Padar S., van Breemen C., Thomas D.W., et al. Differential regulation of calcium homeostasis in adenocarcinoma cell line A549 and its Taxol-resistant subclone. British J Pharmacology. 2004; 142(2): 305-16.-DOI: 10.1038/sj.bjp.0705755.-URL: https://bpspubs.onlinelibrary.wiley.com/doi/10.1038/sj.bjp.0705755.
Gupta K., Sirohi V.K., Kumari S., et al. Sorcin is involved during embryo implantation via activating VEGF/PI3K/Akt pathway in mice. J Mol Endocrinol. 2018; 60(2): 119-32.-DOI: 10.1530/JME-17-0153.-URL: https://jme.bioscientifica.com/view/journals/jme/60/2/JME-17-0153.xml.
Yamagishi N., Nakao R., Kondo R., et al. Increased expression of sorcin is associated with multidrug resistance in leukemia cells via up-regulation of MDR1 expression through cAMP response element-binding protein. Biochem Biophys Res Commun. 2014; 448(4): 430-6.-DOI: 10.1016/j.bbrc.2014.04.125.
Deng L., Su T., Leng A., et al. Upregulation of soluble resistance-related calcium-binding protein (sorcin) in gastric cancer. Med Oncol. 2010; 27(4): 1102-8.-DOI: 10.1007/s12032-009-9342-5.-URL: https://pubmed.ncbi.nlm.nih.gov/24796664/.
Zhou Y., Xu Y., Tan Y., et al. Sorcin, an important gene associated with multidrug-resistance in human leukemia cells. Leuk Res. 2006; 30(4): 469-76.-DOI: 10.1016/j.leukres.2005.08.024.-URL: https://pubmed.ncbi.nlm.nih.gov/16213583/.
Zhang H., Hu S., Sanches J.G.P., et al. Sorcin promotes proliferation of hepatocellular carcinoma by regulating VEGFA/B via PI3K pathway. J Physiol Biochem. 2024; 80(2): 381-92.-DOI: 10.1007/s13105-024-01011-4.-URL: https://link.springer.com/10.1007/s13105-024-01011-4.
Li Y., Tian M., Pires Sanches J.G., et al. Sorcin inhibits mitochondrial apoptosis by interacting with STAT3 via NF-κB pathway. IJMS. 2024; 25(13): 7206.-DOI: 10.3390/ijms25137206.-URL: https://www.mdpi.com/1422-0067/25/13/7206.
Zhang J., Chen J., Shan B., et al. Clinical Significance and prognostic value of human soluble resistance-related calcium-binding protein: a pan-cancer analysis. Front Med. 2022; 8: 752619.-DOI: 10.3389/fmed.2021.752619.-URL: https://www.frontiersin.org/articles/10.3389/fmed.2021.752619/full.
Hu Y., Li S., Yang M., et al. Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Res Treat. 2014; 143(2): 287-99.-DOI: 10.1007/s10549-013-2809-2.-URL: https://pubmed.ncbi.nlm.nih.gov/24337682/.
Lei X., Liang Y., Chen J., et al. Retraction note: sorcin predicts poor prognosis and promotes metastasis by facilitating epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2018; 8(1): 11857.-DOI: 10.1038/s41598-018-29892-8.-URL: https://www.nature.com/articles/s41598-018-29892-8.
Colotti G., Poser E., Fiorillo A., et al. Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells. molecules. 2014; 19(9): 13976-89.-DOI: 10.3390/molecules190913976.-URL: https://www.mdpi.com/1420-3049/19/9/13976.
Genovese I., Fiorillo A., Ilari A., et al. Binding of doxorubicin to Sorcin impairs cell death and increases drug resistance in cancer cells. Cell Death Dis. 2017; 8(7): e2950-e2950.-DOI: 10.1038/cddis.2017.342.-URL: https://www.nature.com/articles/cddis2017342.
He Q., Zhang G., Hou D., et al. Overexpression of sorcin results in multidrug resistance in gastric cancer cells with up-regulation of P-gp. Oncol Rep. 2011; 25(1): 237-43.-DOI: 10.3892/or-00001066 PMID: 21109982.
Hu Y., Cheng X., Li S., et al. Inhibition of sorcin reverses multidrug resistance of K562/A02 cells and MCF-7/A02 cells via regulating apoptosis-related proteins. Cancer Chemother Pharmacol. 2013; 72(4): 789-98.-DOI: 10.1007/s00280-013-2254-2.-URL: https://pubmed.ncbi.nlm.nih.gov/24013575/.
Liu X., Chen L., Feng B., Liu G. Reversing effect of sorcin in the drug resistance of human nasopharyngeal carcinoma. Anat Rec (Hoboken). 2014; 297(2): 215-21.-DOI: 10.1002/ar.22832.-URL: https://anatomypubs.onlinelibrary.wiley.com/doi/10.1002/ar.22832.
Parekh H.K., Deng H.B., Choudhary K., et al. Overexpression of sorcin, a calcium-binding protein, induces a low level of paclitaxel resistance in human ovarian and breast cancer cells. Biochem Pharmacol. 2002; 63(6): 1149-58.-DOI: 10.1016/s0006-2952(02)00850-x.-URL: https://pubmed.ncbi.nlm.nih.gov/11931848/.
Ali R., Huang Y., Maher S.E., et al. miR-1 mediated suppression of Sorcin regulates myocardial contractility through modulation of Ca2+ signaling. J Mol Cell Cardiol. 2012; 52(5): 1027-37.-DOI: 10.1016/j.yjmcc.2012.01.020.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0022282812000533.
Bartel D.P. MicroRNAs. Cell. 2004; 116(2): 281-97.-DOI: 10.1016/S0092-8674(04)00045-5.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0092867404000455.
Li E.Y., Zhao P.J., Jian J., et al. Vitamin B1 and B12 mitigates neuron apoptosis in cerebral palsy by augmenting BDNF expression through MALAT1/miR-1 axis. Cell Cycle. 2019; 18(21): 2849-59.-DOI: 10.1080/15384101.2019.1638190.-URL: https://www.tandfonline.com/doi/full/10.1080/15384101.2019.1638190.
Lv L., Zheng N., Zhang L., et al. Metformin ameliorates cardiac conduction delay by regulating microRNA-1 in mice. Eur J Pharmacol. 2020; 881: 173131.-DOI: 10.1016/j.ejphar.2020.173131.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0014299920302235.
Deng L., Tan T., Zhang T., et al. miR 1 reverses multidrug resistance in gastric cancer cells via downregulation of sorcin through promoting the accumulation of intracellular drugs and apoptosis of cells. Int J Oncol. 2019.-DOI: 10.3892/ijo.2019.4831.-URL: http://www.spandidos-publications.com/10.3892/ijo.2019.4831
Sun Y., Wang C., Meng Q., et al. Targeting P‐glycoprotein and SORCIN: Dihydromyricetin strengthens anti‐proliferative efficiency of adriamycin via MAPK/ERK and Ca2+ ‐mediated apoptosis pathways in MCF‐7/ADR and K562/ADR. J Cell Physiol. 2018; 233(4): 3066-79.-DOI: 10.1002/jcp.26087.-URL: https://onlinelibrary.wiley.com/doi/10.1002/jcp.26087.
Sun Y., Liu W., Wang C., et al. Combination of dihydromyricetin and ondansetron strengthens antiproliferative efficiency of adriamycin in K562/ADR through downregulation of SORCIN: A new strategy of inhibiting P‐glycoprotein. J Cell Physiol. 2019; 234(4): 3685-96.-DOI: 10.1002/jcp.27141.-URL: https://onlinelibrary.wiley.com/doi/10.1002/jcp.27141.
Peng H., Yuan X., Luo S., et al. Reactive oxygen species contribute to TRAIL receptors upregulation; the mechanism for PH II-7 augmenting TRAIL induced apoptosis in leukemia cells. Eur J Pharmacol. 2015; 746: 344-52.-DOI: 10.1016/j.ejphar.2014.10.028.-URL: https://linkinghub.elsevier.com/retrieve/pii/S0014299914007353.
Wood R.J., Tchack L., Angelo G., et al. DNA microarray analysis of vitamin D-induced gene expression in a human colon carcinoma cell line. Physiol Genomics. 2004; 17(2): 122-9.-DOI: 10.1152/physiolgenomics.00002.2003.-URL: https://www.physiology.org/doi/10.1152/physiolgenomics.00002.2003.
Li J., Chen B.A., Zhu M.S., et al. Influence of tetrandrine on SORCIN gene expression in K562/A02 cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2008; 16(1): 65-9.-DOI: 10.3736/jcim20080916.
Luan F., He X., Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol. 2020; 72(11): 1491-512.-DOI: 10.1111/jphp.13339.-URL: https://academic.oup.com/jpp/article/72/11/1491/6132645.
Dabaghi M., Rahgozar S., Moshtaghian J., et al. Overexpression of SORCIN is a Prognostic Biomarker for Multidrug-Resistant Pediatric Acute Lymphoblastic Leukemia and Correlates with Upregulated MDR1 /P-gp. Genet Test Mol Biomarkers. 2016; 20(9): 516-21.-DOI: 10.1089/gtmb.2016.0031.-URL: http://www.liebertpub.com/doi/10.1089/gtmb.2016.0031.
Noel P., Von Hoff D.D., Saluja A.K., et al. Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci. 2019; 40(5): 327-41.-DOI: 10.1016/j.tips.2019.03.002.-URL: https://pubmed.ncbi.nlm.nih.gov/30975442/. Liu H., Shen M., Zhao D., et al. The effect of triptolide-loaded exosomes on the proliferation and apoptosis of human ovarian cancer SKOV3 cells. Biomed Res Int. 2019; 2019: 2595801.-DOI: 10.1155/2019/2595801.-URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556367/.
Wang C., Xu X., Zhang P., et al. Lipid-coated albumin-paclitaxel nanoparticles loaded with sorcin-siRNA reverse cancer chemoresistance via restoring intracellular calcium ion homeostasis. J Nanobiotechnology. 2022; 20(1): 319.-DOI: 10.1186/s12951-022-01487-6.-URL: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-022-01487-6.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025