Safety of Use, Pharmacokinetics and Dosimetric Characteristics of the Radiopharmaceutical [99mTc]Tc- HYNIC-PSMA
##article.numberofdownloads## 14
##article.numberofviews## 49
pdf (Русский)

Keywords

radionuclide diagnostics
prostate cancer
99mTc; PSMA
pharmacokinetics
dosimetry

How to Cite

Medvedeva A. А., Chernov, V. I., Zelchan, R. V., Rуbina A. N., Bragina, O. D., & Zebzeeva, O. S. (2025). Safety of Use, Pharmacokinetics and Dosimetric Characteristics of the Radiopharmaceutical [99mTc]Tc- HYNIC-PSMA. Voprosy Onkologii, 71(1), OF–2175. https://doi.org/10.37469/0507-3758-2025-71-1-OF-2175

Abstract

Introduction. In recent years, there has been considerable interest in the development of 99mTc-labelled radiopharmaceuticals based on small-molecule PSMA inhibitors for prostate tumor imaging.

Aim. Evaluation of the safety, pharmacokinetics and dosimetric characteristics of the radiopharmaceutical [99mTc]Tc-HYNIC-PSMA.

Materials and methods. The study included 10 patients with prostate cancer (PC) stages T1-4N0-3M0-1. The radiopharmaceutical [99mTc]Tc-HYNIC-PSMA was administered intravenously as a bolus at a dose of 649.6 ± 70.7 MBq. Patients were dynamically followed for 48 hours after radiopharmaceutical administration, with laboratory and clinical data checked. The radionuclide study was performed on a Symbia Intevo Bold gamma camera (Siemens) in whole-body mode 2, 4, 6 and 24 hours after radiopharmaceutical administration, and single-photon emission computed tomography combined with CT (SPECT/CT) 2 hours after radiopharmaceutical administration. Based on the post-processing data, the level of radiopharmaceutical accumulation in the main organs was analyzed. Absorbed doses were calculated using the OLINDA/EXM 1.1 program.

Results. It was shown that [99mTc]Tc-HYNIC-PSMA was well tolerated by the patients and no pathologically significant changes in clinical laboratory tests were detected. The half-life of the radiopharmaceutical in the blood was 2.7 hours. Dosimetric studies showed that the kidneys were the main critical organs. The effective radiation dose to patients for a single intravenous administration of the radiopharmaceutical was 0.004 ± 0.0005 mSv/MBq, the equivalent effective dose was 0.00748 ± 0.00014 mSv/MBq. It was shown that SPECT/CT with [99mTc]Tc-HYNIC-PSMA allows visualization of PSMA-positive prostate tumors, regional and distant metastases of prostate cancer.

Conclusion. The data obtained demonstrate that the pharmacokinetic parameters and dose loads of [99mTc]Tc-HYNIC-PSMA are similar to other PSMA ligand-based radiopharmaceuticals for SPECT imaging. Further clinical studies are needed to evaluate the diagnostic efficacy of SPECT/CT with [99mTc]Tc-HYNIC-PSMA.

https://doi.org/10.37469/0507-3758-2025-71-1-OF-2175
##article.numberofdownloads## 14
##article.numberofviews## 49
pdf (Русский)

References

Pillai M.R.A., Dash A., Knapp F.F. Sustained availability of 99mTc: possible paths forward. J Nucl Med. 2013; 54: 313-323.-DOI: https://doi.org/10.2967/jnumed.112.110338.

Chernov V.I., Dudnikova E.A., Zelchan R.V., et al. The first experience of using 99mTc-1-thio-d-glucose for single-photon emission computed tomography imaging of lymphomas. Siberian Journal of Oncology. 2018; 17(4): 81-87.-DOI: https://doi.org/10.21294/1814-4861-2018-17-4-81-87.-URL: https://www.elibrary.ru/item.asp?id=35458986.

Chernov V.I., Sinilkin I.G., Zelchan R.V., et al. Experimental study of 99mTc-aluminum oxide use for sentinel lymph nodes detection. AIP Conference Proceedings. 2016; 1760: 020012.-DOI: https://doi.org/10.1063/1.4960231.

Зельчан Р.В., Медведева А.А., Синилкин И.Г., et al. Изучение функциональной пригодности туморотропного радиофармпрепарата 99мТс-1-тио-6-глюкоза в эксперименте. Молекулярная медицина. 2018; (16)3: 54-57.-URL: https://www.elibrary.ru/item.asp?id=34932642. [Zeltchan R., Medvedeva A., Sinilkin I., et al. To study the functional suitability of the tumorotropic radiopharmaceutical 99mTs-1-thio-6-glucose in an experiment. Molecular Medicine. 2018; (16)3: 54-57.-URL: https://www.elibrary.ru/item.asp?id=34932642. (In Rus)].

Zeltchan R., Medvedeva A., Sinilkin I., et al. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose. AIP Conference Proceedings. 2016; 1760: 020072.-DOI: https://doi.org/10.1063/1.4960291.

Чернов В.И., Медведева А.А., Синилкин И.Г., et al. Разработка радиофармпрепаратов для радионуклидной диагностики в онкологии. Медицинская визуализация. 2016; 2: 63-66.-EDN: VWOIPT.-URL: https://www.elibrary.ru/item.asp?id=25981425. [Chernov V.I., Medvedeva A.A., Sinilkin I.G., et al. Development radiopharmaceuticals for nuclear medicine in oncology. Medical Imaging. 2016; 2: 63-66.-EDN: VWOIPT-URL: https://www.elibrary.ru/item.asp?id=25981425. (In Rus)].

Тищенко В.К., Петриев В.М., Власова О.П., et al. Меченные технецием-99m низкомолекулярные ингибиторы простат-специфического мембранного антигена. Вестник РАМН. 2022; 77(6): 420-436.-EDN: NDEQUS.-DOI: https://doi.org/10.15690/vramn2207.-URL: https://www.elibrary.ru/item.asp?id=50359378. [Tishchenko V.K., Petriev V.M., Vlasova O.P., et al. 99mTс-labelled low molecular weight inhibitors of prostate-specific membrane antigen. Annals of the Russian Academy of Medical Sciences. 2022; 77(6): 420-436.-EDN: NDEQUS.-DOI: https://doi.org/10.15690/vramn2207.-URL: https://www.elibrary.ru/item.asp?id=50359378. (In Rus)].

Леонтьев А.В., Халимон А.И., Кулиев М.Т., et al. Современные возможности применения радиофармпрепаратов на основе лигандов к простатспецифическому мембранному антигену, меченных 99mTc, при раке предстательной железы. Онкоурология. 2021; 17(4): 136-150.-DOI: https://doi.org/10.17650/1726-9776-2021-17-4-136-150.-URL: https://www.elibrary.ru/item.asp?id=47940445. [Leontyev A.V., Khalimon A.I., Kuliev M.T., et al. Modern possibilities of application 99mtc-labeled prostate-specific membrane antigen ligands in prostate cancer. Oncourology. 2021; 17(4): 136-150.-DOI: https://doi.org/10.17650/1726-9776-2021-17-4-136-150.-URL: https://www.elibrary.ru/item.asp?id=47940445. (In Rus)].

Брагина О.Д., Чернов В.И., Ларькина М.С., et al. Простатический специфический мембранный антиген: современные возможности в диагностике рака предстательной железы. Молекулярная медицина. 2018; 16(4): 3-8.-DOI: https://doi.org/10.29296/24999490-2018-04-01.-URL: https://www.elibrary.ru/item.asp?id=35357624. [Bragina O.D., Chernov V.I., Larkina M.S., et al. Prostate-specific membrane antigen: modern possibilities in the diagnosis of prostate cancer. Molecular Medicine. 2018; 16(4): 3-8.-DOI: https://doi.org/10.29296/24999490-2018-04-01.-URL: https://www.elibrary.ru/item.asp?id=35357624. (In Rus)].

Игнатова М.В., Тлостанова М.С., Станжевский А.А. Первый опыт выполнения совмещенной позитронно-эмиссионной с компьютерной томографией с простатспецифическим мембранным антигеном, меченым галлием-68, у пациентов с минимальным уровнем простатспецифического антигена после радикальной простатэктомии. Вопросы онкологии. 2018; 64(4): 508-514.-URL: https://www.elibrary.ru/item.asp?id=36351533. [Ignatova M.V., Tlostanova M.S., Stanzhevsky A.A. Тhe first experience of performing combined positronemission with computed tomography with prostate-specific membrane antigen labeled with gallium-68 in patients with minimal level of prostate-specific antigen after radical prostatectomy. Voprosy Oncologii = Problems in Oncology 2018; 64(4): 508-514.-URL: https://www.elibrary.ru/item.asp?id=36351533. (In Rus)].

Stott Reynolds T.J., Smith C.J., Lewis M.R. Peptide-based radiopharmaceuticals for molecular imaging of pros¬tate cancer. Adv Exp Med Biol. 2018; 1096: 135-158.-DOI: https://doi.org/10.1007/978-3-319-99286-0_8.

Brunello S., Salvarese N., Carpanese D., et al. A review on the current state and future perspectives of [99mTc]Tc-housed PSMA-i in prostate cancer. Molecules. 2022; 27(9): 2617.-DOI: https://doi.org/10.3390/molecules27092617.

Banerjee S.R., Pullambhatla M., Foss C.A., et al. Effect of chelators on the pharmacokinetics of 99mTc-labeled imaging agents for the prostate-specific membrane antigen (PSMA). J Med Chem. 2013; 56(15): 6108-6121.-DOI: https://doi.org/10.1021/jm400823w.

Ferro-Flores G., Luna-Gutiérrez M., Ocampo-García B., et al. Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. Nucl Med Biol. 2017; 48: 36-44.-DOI: https://doi.org/10.1016/j.nucmedbio.2017.01.012.

Kularatne S.A., Zhou Z., Yang J., et al. Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted 99mTc-radioimaging agents. Mol Pharm. 2009; 6: 790-800.-DOI: https://doi.org/10.1021/mp9000712.

Santos-Cuevas C., Davanzo J., Ferro-Flores G., et al. 99mTc-labeled PSMA inhibitor: Biokinetics and radiation dosimetry in healthy subjects and imaging of prostate cancer tumors in patients. Nucl Med Biol. 2017; 52: 1-6.-DOI: https://doi.org/10.1016/j.nucmedbio.2017.05.005.

Vallabhajosula S., Nikolopoulou A., Babich J.W., et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med. 2014; 55: 1791-1798.-DOI: https://doi.org/10.2967/jnumed.114.140426.

Lawal I.O., Ankrah A.O., Mokgoro N.P., et al. Diagnostic sensitiv ity of Tc-99m HYNIC PSMA SPECT/CT in prostate carcinoma: a comparative analysis with Ga-68 PSMA PET/CT. Prostate. 2017; 77(11): 1205-1212.-DOI: https://doi.org/10.1002/pros.23379.

García-Pérez F.O., Davanzo J., López-Buenrostro S., et al. Head to head comparison performance of 99mTc-EDDA/HYNIC-IPSMA SPECT/CT and 68Ga-PSMA-11 PET/CT a prospective study in biochemical recurrence prostate cancer patients. Am J Nucl Med Mol Imaging. 2018; 8(5): 332-340.

Hillier S.M., Maresca K.P., Lu G., et al. 99m Tc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J Nucl Med. 2013; 54: 1369-1376.-DOI: https://doi.org/10.2967/jnumed.112.116624.

Maresca K., Wang J.C., Hillier S., et al. Development of a simple kit for Tc-99m-MIP-1404, a Single Amino Acid Chelate (SAAC II) derived small molecule inhibitor of Prostate Specific Membrane Antigen (PSMA) for imaging prostate cancer. J. Nucl. Med. 2012; 53(1): 523.

Lodhi N.A., Park J.Y., Kim K., et al. Synthesis and evaluation of 99mTc-tricabonyl labeled isonitrile conjugates for prostate-specific membrane antigen (PSMA) image. Inorganics. 2020; 8: 5.-DOI: https://doi.org/10.3390/inorganics8010005.

Akizawa H., Alberto R., Arano, Y., et al. Radioisotopes and Radiopharmaceutical Series no. 1. Vienna: 2009. Tc-99m Radiopharmaceuticals:Status and Trends. International Atomic Energy Agency. 2009; 360.-URL: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1405_web.pdf.

Wållberg H., Orlova A., Altai M., et al. Molecular design and optimization of 99mTc-labeled recombinant affibody molecules improves their biodistribution and imaging properties. J Nucl Med. 2011; 52(3): 461-9.-DOI: https://doi.org/10.2967/jnumed.110.083592.

Rusckowski M., Qu T., Gupta S., et al. A comparison in monkeys of (99m)Tc labeled to a peptide by 4 methods. J Nucl Med. 2001; 42(12): 1870-7.

Robu S., Schottelius M. Eiber M., et al. Preclinical evaluation and first patient application of 99m Tc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J Nucl Med. 2017; 58: 235-242.-DOI: https://doi.org/10.2967/jnumed.116.178939.

Xu X., Zhang J., Hu S., et al. 99m Tc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen. Nucl Med Biol. 2017: 48; 69-75.-DOI: https://doi.org/10.1016/j.nucmedbio.2017.01.010.

Urbn S., Meyer C., Dahlbom M., et al. Radiation dosimetry of 99mTc-PSMA I&S: a single-center prospective study. J Nucl Med. 2021; 62(8): 1075-1081.-DOI: https://doi.org/10.2967/jnumed.120.253476.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025