CURRENT UNDERSTANDING OF THE MOLECULAR MECHANISMS IN ONCOGENESIS OF GASTROINTESTINAL STROMAL TUMORS
PDF (Русский)

Keywords

PDGFRА
CDKN2A
TP53
GASTROINTESTINAL STROMAL TUMORS
C-KIT
PDGFRA
DYSTROPHIN

How to Cite

Gvaldin, D., Omelchuk, Y., Timoshkina, N., Trifanov, V., & Sidorenko, Y. (2020). CURRENT UNDERSTANDING OF THE MOLECULAR MECHANISMS IN ONCOGENESIS OF GASTROINTESTINAL STROMAL TUMORS. Voprosy Onkologii, 66(1), 13–22. https://doi.org/10.37469/0507-3758-2020-66-1-13-22

Abstract

The association of genetic driver changes in gastrointestinal stromal tumors (GIST) with clinical implications is the most studied aspect in all solid tumors. Genotyping of particular exons c-KIT and PDGFRA included in the standard practice of diagnosis and treatment of GIST. The review analyzes the current understanding of the molecular-genetic mechanisms and markers that underlie the GIST profiling. Of particular interest are wild-type tumors of c-KIT and PDGFRA, in which activating mutations of the RAS, BRAF and EGFR oncogenes are found, associated with the early stages of disease progression. The data of studies of genetic and epigenetic changes in GIST, which revealed the prognostic value of inactivation of CDKN2A and p53, deletions of 22q, 1p and 15q, CpG hypermethylation are presented. New factors that determine a high risk of progression of GISTs are described: inactivation of dystrophin, DNA hypomethylation, increased expression of miRNAs and HOTAIR. The progress achieved in understanding the molecular mechanisms of GISTs give the opportunity of developing and effectively applying new therapeutic approaches, expanding the range of molecular genetic markers that determine patient surveillance.
https://doi.org/10.37469/0507-3758-2020-66-1-13-22
PDF (Русский)

References

Søreide K., Sandvik O.M., Søreide J.A. et al. Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies // Cancer epidemiology. - 2016. - Vol. 40. - P. 39-46.

Yamamoto H., Oda Y Gastrointestinal stromal tumor: recent advances in pathology and genetics // Pathology international. - 2015. - Vol. 65(1). - P. 9-18.

Rossi S., Miceli R., Messerini L. et al. Natural history of imatinib-naive GISTs: a retrospective analysis of 929 cases with long-term follow-up and development of a survival nomogram based on mitotic index and size as continuous variables // The American journal of surgical pathology. - 2011. - Vol. 35(11). - P 1646-1656.

Кит О.И., Колесников Е.Н., Снежко А.В. и др. Случай успешного лечения рецидивной гастроинтестинальной стромальной опухоли двенадцатиперстной кишки с инвазией в нижнюю полую вену // Онкология. Журнал им. П.А.Герцена. - 2016. - № 4. - С.58-62.

Hemming M.L., Heinrich M.C., Bauer S., George S. Translational insights into gastrointestinal stromal tumor and current clinical advances // Annals of Oncology. - 2018. - Vol. 29(10). - P. 2037-2045.

Carney J.A., Stratakis C.A. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad // American journal of medical genetics. - 2002. - Vol. 108(2). - P. 132-139.

Gopie P., Mei L., Faber A.C. et al. Classification of gastrointestinal stromal tumor syndromes // Endocrine-related cancer. - 2018. - Vol. 25(2). - P. R49-R58.

Burgoyne A.M., Somaiah N., Sicklick J.K. Gastrointestinal stromal tumors in the setting of multiple tumor syndromes // Current opinion in oncology. - 2014. - Vol. 26(4). - P. 408-414.

Forde P.M., Cochran R.L., Boikos S.A. et al. Familial GI Stromal Tumor With Loss of Heterozygosity and Amplification of Mutant KIT // Journal of clinical oncology: official journal of the American Society of Clinical Oncology. - 2016. - Vol. 34(3). - P. e13.

Roskoski Jr. R. The role of small molecule Kit protein-tyrosine kinase inhibitors in the treatment of neoplastic disorders // Pharmacological research. - 2018. - Vol. 133. - P. 35-52.

Ahmad F., Lad P., Bhatia S., Das B.R. et al. Molecular spectrum of c-KIT and PDGFRA gene mutations in gastro intestinal stromal tumor: Determination of frequency, distribution pattern and identification of novel mutations in Indian patients // Medical Oncology. - 2015. - Vol. 32(1). - P. 424.

Obata Y., Horikawa K., Takahashi T. et al. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors // Oncogene. - 2017. - Vol. 36(26). - P. 3661-3672.

Babaei M.A., Kamalidehghan B., Saleem M. et al. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells // Drug design, development and therapy. - 2016. - Vol. 10. - P. 2443-2459.

Andrae J., Gallini R., Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. - 2008. - Vol. 22. - P. 1276-1312.

Liang J., Wu YL., Chen B.J. et al. The C-kit receptor-mediated signal transduction and tumor-related diseases // International journal of biological sciences. - 2013. - Vol. 9(5). - P. 435-443.

Gajiwala K.S., Wu J.C., Christensen J. et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients // Proceedings of the National Academy of Sciences. - 2009. - Vol. 106(5). - P. 1542-1547.

Wozniak A., Rutkowski P., Schffski P. et al. Tumor genotype is an independent prognostic factor in primary gastrointestinal stromal tumors of gastric origin: a european multicenter analysis based on ConticaGIST // Clinical cancer research. - 2014. - Vol. 20(23). - P. 6105-6116.

Мазуренко H.H., Цыганова И.В. Молекулярно-генетические особенности и маркеры гастроинтестинальных стромальных опухолей // Успехи молекулярной онкологии. - 2015. - № 2. - C. 29-40.

Steigen S.E., Eide T.J., Wasag B. et al. Mutations in gastrointestinal stromal tumors-a population based study from Northern Norway // Apmis. - 2007. - Vol. 115(4). - P. 289-298.

Chen L.L., Holden J.A., Choi H et al. Evolution from heterozygous to homozygous KIT mutation in gastro-intestinal stromal tumour correlates with the mechanism of mitotic nondisjunction and significant tumour progression // Mod. Pathol. - 2008. - Vol. 21. - P. 826-836.

Antonescu C.R., Sommer G., Sarran L. et al. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors // Clinical Cancer Research. - 2003. - Vol. 9(9). - P. 3329-3337.

Lasota J., Miettinen M. KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs) // Seminars in diagnostic pathology. - 2006. - Vol. 23(2). - P. 91-102.

Szucs Z., Thway K., Fisher C. et al. Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications // Future Oncology. - 2017. - Vol. 13(1). - P. 93-107.

Miranda C., Nucifora M., Molinari F. et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors // Clinical cancer research. - 2012. - Vol. 18(6). - P. 1769-1776.

Melzer C., Hass R., Lehnert H., Ungefroren H. RAC1B: A Rho GTPase with versatile functions in malignant transformation and tumor progression // Cells. - 2019. - Vol. 8(1). - P. 21.

Huss S., Pasternack H., Ihle M.A. et al. Clinicopathological and molecular features of a large cohort of gastrointestinal stromal tumors (GISTs) and review of the literature: BRAF mutations in KIT/PDGFRA wild-type GISTs are rare events // Human pathology. - 2017. - Vol. 62. - P. 206-214.

Mou Y., Wang Q., Li B. The "Wild"-type gastrointestinal stromal tumors: Heterogeneity on molecule characteristics and clinical features // Cancer Translational Medicine. - 2018. - Vol. 4(3). - P. 75-82.

Li K., Cheng H., Li Z. et al. Genetic progression in gastrointestinal stromal tumors: mechanisms and molecular interventions // Oncotarget. - 2017. - Vol. 8(36). - P. 60589-60604.

Schaefer I.-M., Wang Y, Liang C.-W. et al. MAX inactivation is an early event in GIST development that regulates p16 and cell proliferation // Nature communications. - 2017. - Vol. 8. - P. 14674-14679.

Pantaleo M.A., Urbini M., Indio V. et al. Genome-wide analysis identifies MEN1 and MAX mutations and a neuroendocrine-like molecular heterogeneity in quadruple WT GIST // Molecular Cancer Research. - 2017. - Vol. 15(5). - P. 553-562.

Ihle M.A., Huss S., Jeske W. et al. Expression of cell cycle regulators and frequency of TP53 mutations in high risk gastrointestinal stromal tumors prior to adjuvant imatinib treatment // PloS one. - 2018. - Vol. 13(2). - P. e0193048.

Heinrich M.C., Patterson J., Beadling C. et al. Genomic aberrations in cell cycle genes predict progression of KITmutant gastrointestinal stromal tumors (GISTs) // Clinical Sarcoma Research. - 2019. - Vol. 9(1). - P. 3.

Wang Y., Fletcher J. A. Cell Cycle and dystrophin dysregulation in GIST // Cell Cycle. - 2015. - Vol. 14(17). - P. 2713-2714.

Shi E., Chmielecki J., Tang C.M. et al. FGFR1 and NTRK3 actionable alterations in "Wild-Type" gastrointestinal stromal tumors // Journal of translational medicine. - 2016. - Vol. 14(1). - P. 339.

Amatu A., Sartore-Bianchi A., Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types // ESMO open. - 2016. - Vol. 1(2). - P. e000023.

Toda-Ishii M., Akaike K., Suehara Y et al. Clinicopathological effects of protein phosphatase 2, regulatory subunit A, alpha mutations in gastrointestinal stromal tumors // Modern Pathology. - 2016. - Vol. 29(11). - P. 1424-1432.

Niinuma T., Kai M., Kitajima H. et al. Downregulation of miR-186 is associated with metastatic recurrence of gastrointestinal stromal tumors // Oncology letters. - 2017. - Vol. 14(5). - P. 5703-5710.

Schaefer I.M., Marino-Enriquez A., Fletcher J.A. What is new in gastrointestinal stromal tumor? // Advances in anatomic pathology. - 2017. - Vol. 24(5). - P. 259-267.

Ricci R., Saragoni L. Everything you always wanted to know about GIST (but were afraid to ask) // Pathologica. - 2016. - Vol. 108. - P. 90-103.

Fouquin A., Guirouilh-Barbat J., Lopez B. et al. PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection // Nucleic acids research. - 2017. - Vol. 45(21). - P. 12325-12339.

Pei D.S., Jia P.P., Luo J.J. et al. AP endonuclease 1 (Apex1) influences brain development linking oxidative stress and DNA repair // Cell death & disease. - 2019. - Vol. 10(5). - P. 348-361.

Xu X., Li J., Sun X., Guo Y et al. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression // Oncotarget. - 2015. - Vol. 6(28). - P. 26161-26176.

Brull A., Morales Rodriguez B., Bonne G. et al. The pathogenesis and therapies of striated muscle laminopathies // Frontiers in physiology. - 2018. - Vol. 9. - P. 1533.

Petrilli A.M., Fernandez-Valle C. Role of Merlin/NF2 inactivation in tumor biology // Oncogene. - 2016. - Vol. 35(5). - P. 537-548.

Iorio N., Sawaya R.A., Friedenberg F.K. The biology, diagnosis and management of gastrointestinal stromal tumours // Alimentary pharmacology & therapeutics. - 2014. - Vol. 39(12). - P. 1376-1386.

Saito K., Sakurai S., Sano T. et al. Aberrant methylation status of known methylation-sensitive CpG islands in gastrointestinal stromal tumors without any correlation to the state of c-kit and PDGFRA gene mutations and their malignancy // Cancer science. - 2008. - Vol. 99(2). - P. 253-259.

Kojima K., Nakamura T., Ooizumi Y et al. Clinical significance of cancer specific methylation of the CDO1 gene in small bowel cancer // PloS one. - 2019. - Vol. 14(1). - P. e0211108.

Yang J., Ikezoe T., Nishioka C. et al. Long-term exposure of gastrointestinal stromal tumor cells to sunitinib induces epigenetic silencing of the PTEN gene // International journal of cancer. - 2012. - Vol. 130(4). - P. 959-966.

Bure I., Braun A., Kayser C. et al. The expression of hematopoietic progenitor cell antigen CD34 is regulated by DNA methylation in a site-dependent manner in gastrointestinal stromal tumours // International journal of cancer. - 2017. - Vol. 141(11). - P. 2296-2304.

Isosaka M., Niinuma T., Nojima M. et al. A screen for epi-genetically silenced microRNA genes in gastrointestinal stromal tumors // PloS one. - 2015. - Vol. 10(7). - P. e0133754.

Basilio-de-Oliveira R.P., Pannain V.L.N. Prognostic angiogenic markers (endoglin, VEGF, CD31) and tumor cell proliferation (Ki67) for gastrointestinal stromal tumors // World journal of gastroenterology: WJG. - 2015. - Vol. 21(22). - P. 6924-6930.

Haller F., Zhang J.D., Moskalev E.A. et al. Combined DNA methylation and gene expression profiling in gastrointestinal stromal tumors reveals hypomethylation of SPP1 as an independent prognostic factor // International journal of cancer. - 2015. - Vol. 136(5). - P. 1013-1023.

Huang K.K., McPherson J.R., Tay S.T. et al. SETD2 histone modifier loss in aggressive GI stromal tumours // Gut. - 2016. - Vol. 65(12). - P. 1960-1972.

Vidigal J. A., Ventura A. The biological functions of miR-NAs: lessons from in vivo studies // Trends in cell biology. - 2015. - Vol. 25(3). - P. 137-147.

Gyvyte U., Juzenas S., Salteniene V. et al. MiRNA profiling of gastrointestinal stromal tumors by next-generation sequencing // Oncotarget. - 2017. - Vol. 8(23). - P. 37225-37238.

Yamamoto H., Kohashi K., Fujita A., Oda Y et al. Fascin-1 overexpression and miR-133b downregulation in the progression of gastrointestinal stromal tumor // Modern Pathology. - 2013. - Vol. 26(4). - P 563-571.

Akakaya P., Caramuta S., hlen J. et al. MicroRNAs and gastrointestinal stromal tumor // microRNA: Cancer. - 2015. - P 51-70.

Koelz M., Lense J., Wrba F. et al. Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors // International journal of oncology. - 2011. - Vol. 38(2). - P. 503-511.

Gits C.M., van Kuijk PF., Jonkers M.B. et al. MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours // British journal of cancer. - 2013. - Vol. 109(6). - P. 1625-1635.

Kim W.K., Park M., Kim YK. et al. MicroRNA-494 down-regulates KIT and inhibits gastrointestinal stromal tumor cell proliferation // Clinical cancer research. - 2011. - Vol. 17(24). - P. 7584-7594.

Fang Y, Fullwood M. J. Roles, functions, and mechanisms of long non-coding RNAs in cancer // Genomics, proteomics & bioinformatics. - 2016. - Vol. 14(1). - P. 42-54.

Tang Q., Hann S. S. HOTAIR: an oncogenic long noncoding RNA in human cancer // Cellular Physiology and Biochemistry. - 2018. - Vol. 47(3). - P. 893-913.

Bhan A., Mandal S. S. LncRNA HOTAIR: A master regulator of chromatin dynamics and cancer // Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. - 2015. - Vol. 1856(1). - P 151-164.

Niinuma T, Suzuki H., Nojima M. et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors // Cancer research. - 2012. - Vol. 72(5). - P 1126-1136.

Lee N.K., Lee J.H., Kim W.K. et al. Promoter methylation of PCDH10 by HOTAIR regulates the progression of gastrointestinal stromal tumors // Oncotarget. - 2016. - Vol. 7(46). - P 75307-75318.

Jiang M.C. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy // Tumour Biol. 2016. - Vol. 37(10). - P. 13077-13090.

Lowell C.A. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk // Cold Spring Harb Perspect Biol. - 2011. - Vol. 3(3). - P. a002352.

Cardoso H.J., Figueira M.I., Socorro S. The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer // J. Cell Commun Signal. - 2017. - Vol. 11(4). - P. 297-307.

Pennock S., Kim L.A., Kazlauskas A. Vascular Endothelial Cell Growth Factor A Acts via Platelet-Derived Growth Factor Receptor a To Promote Viability of Cells Enduring Hypoxia // Mol Cell Biol. - 2016. - Vol. 36(18). - P. 2314-2327.

Imura M., Kojima Y., Kubota Y. et al. Regulation of cell proliferation through a KIT-mediated mechanism in benign prostatic hyperplasia // Prostate. - 2012. - Vol. 72(14). - P 1506-1513.

Lennartsson J., Rönnstrand L. Stem cell factor receptor/ c-Kit: from basic science to clinical implications // Physiol Rev. - 2012. - Vol. 92(4). - P 1619-1649.

Plattner R., Irvin B.J., Guo S. et al. A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-gamma1 // Nat Cell Biol. - 2003. - Vol. 5(4). - P 309-319.

Schlessinger J., Mohammadi M., Margolis B., Ullrich A. Role of SH2-containing proteins in cellular signaling by receptor tyrosine kinases // Cold Spring Harb Symp Quant Biol. - 1992. - Vol. 57. - P. 67-74.

Berridge M.J. Cell Signalling Biology. - 2014. - DOI: 10.1042/csb0001012

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2020