Prospect of application of artificial intelligence systems for breast cancer screening
##article.numberofdownloads## 271
##article.numberofviews## 1232
pdf (Русский)

Keywords

artificial intelligence
screening
mammography
breast
cancer

How to Cite

Ovsyannikov, A., Morozov, S., Govorukhina, V., Didenko, V., Puchkova, O., Pavlov, N., Andreychenko, A., Ledikhova, N., & Vladzymyrskyy, A. (2020). Prospect of application of artificial intelligence systems for breast cancer screening. Voprosy Onkologii, 66(6), 603–608. https://doi.org/10.37469/0507-3758-2020-66-6-603-608

Abstract

The article presents a literature review of the databases such as PubMed, MEDLINE, Springer eLIBRARY and found via Google Scholar relevant Russian scientific articles. Articles were searched using the keywords: “breast cancer”, “artificial intelligence”, “screening”. The information obtained was then pooled, structured and analyzed in order to review the current state and problems in the field of breast cancer screening and application of artificial intelligence systems in this field in the world and in Russia. The possibility of applying artificial intelligence technologies for breast cancer screening in Russian healthcare system is discussed

https://doi.org/10.37469/0507-3758-2020-66-6-603-608
##article.numberofdownloads## 271
##article.numberofviews## 1232
pdf (Русский)

References

Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность) / А.Д. Каприн, В.В. Старинский, Г.В. Петрова. – М.: МНИОИ им. П.А. Герцена, 2019.

Houssami N., Lee C.I., Buist D.S.M. Artificial intelligence for breast cancer screening: Opportunity or hype? // Breast. – 2017. – Vol. 36. – P. 31–33. – DOI:10.1016/j.breast.2017.09.003.

Autier P., Boniol M. Mammography screening: A major issue in medicine // Eur J Cancer. – 2018. – Vol. 90. – P. 34–62. – doi:10.1016/j.ejca.2017.11.002.

Massat N.J., Dibden A., Parmar D. Impact of Screening on Breast Cancer Mortality: The UK Program 20 Years On // Cancer Epidemiol Biomarkers Prev. – 2016. – Vol. 25 (3). – P. 455–462. – doi:10.1158/1055-9965.EPI-15-0803.

Рассказова Е.А., Рожкова Н.И. Скрининг для ранней диагностики рака молочной железы // Исследования и практика в медицине. – 2014. – Т. 1 (1). – С. 45–51.

Семиглазова Т.Ю., Дашян Г.А., Семиглазов В.В. и др. Качество жизни – принципиальный критерий эффективности таргетной терапии метастатического НЕR2-положительного рака молочной железы // Современная онкология. – 2015. – №1. – С. 19–24.

Попова Т.Н., Кузеванова Е.А. Качество жизни больных местно-распространенным раком молочной железы с прогрессированием заболевания после комплексного лечения // Опухоли женской репродуктивной системы. – 2011. – №4. – C. 13–18.

Blumen H., Fitch K., Polkus V. Comparison of Treatment Costs for Breast Cancer, by Tumor Stage and Type of Service // Am Health Drug Benefits. – 2016. – Vol. 9. – №1. – P. 23–32.

Philpotts L.E. Can computer-aided detection be detrimental to mammographic interpretation? // Radiology. – 2009. – Vol. 253. – № 1. – P. 17–22. – doi:10.1148/radiol.2531090689.

Ekpo E.U., Alakhras M., Brennan P. Errors in Mammography Cannot be Solved Through Technology Alone // Asian Pac J Cancer Prev. – 2018. – Vol. 19. – № 2. – P. 291–301. – doi:10.22034/APJCP.2018.19.2.29.

Shi W., Nagler R.H., Fowler E.F. et al. Predictors of Women's Awareness of the Benefits and Harms of Mammography Screening and Associations with Confusion, Ambivalence, and Information Seeking // Health Commun. – 2019. – P. 1–12. – doi:10.1080/10410236.2019.1687129.

Seely J.M., Alhassan T. Screening for breast cancer in 2018-what should we be doing today? // Curr Oncol. – 2018. – Vol. 25 (Suppl 1). – P. S115–S124. – doi:10.3747/co.25.3770.

DeFrank J.T., Rimer B.K., Bowling J.M. et al. Influence of false-positive mammography results on subsequent screening: do physician recommendations buffer negative effects // J Med Screen. – 2012. – Vol. 19. – №1. – P. 35–41. – doi:10.1258/jms.2012.01112.

Houssami N., Hunter K. The epidemiology, radiology and biological characteristics of interval breast cancers in population mammography screening // NPJ Breast Cancer. – 2017. – Vol. 3. – №12. – doi:10.1038/s41523-017-0014-x.

Nelson H.D., O'Meara E.S., Kerlikowske K. et al. Factors Associated With Rates of False-Positive and False-Negative Results From Digital Mammography Screening: An Analysis of Registry Data // Ann Intern Med. – 2016. – Vol. 164. – №4. – P. 226−235. – doi:10.7326/M15-0971.

Siu A.L. Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement // Ann Intern Med. – 2016. – Vol. 164. – №4. – P. 279−296. – doi:10.7326/M15-2886.

Geras K.J., Mann R.M., Moy L. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives // Radiology. – 2019. – Vol. 293, №2. – P. 246–259. – DOI:10.1148/radiol.2019182627.

Chan H.P., Samala R.K., Hadjiiski L.M. CAD and AI for breast cancer-recent development and challenges // Br J Radiol. – 2020. – Vol. 93. – doi:10.1259/bjr.20190580.

Sechopoulos I., Mann R.M. Stand-alone artificial intelligence – The future of breast cancer screening? // The Breast. – 2020. – Vol. 49. – P. 254–260. – doi:10.1016/j.breast.2019.12.014.

Rodriguez-Ruiz A., Lång K., Gubern-Merida A. et al. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study // Eur Radiol. – 2019. – Vol. 29, №9. – P. 4825–4832. – doi:10.1007/s00330-019-06186-9.

Wu N., Phang J., Park J. et al. Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening // IEEE Trans Med Imaging. – 2020. – Vol. 39. №4. – P. 1184–1194. – doi:10.1109/TMI.2019.2945514.

Kooi T., Litjens G., van Ginneken B. et al. Large scale deep learning for computer aided detection of mammographic lesions // Med Image Anal. – 2017. – Vol. 35. – P. 303–312. – doi:10.1016/j.media.2016.07.007.

Медло А.А., Уткин Л.В., Моисеенко В.М. Алгоритмы диагностики XXI века. Искусственный интеллект в распознавании рака легкого // Практическая онкология. – 2018. – Т. 19(3). – С. 292–298. – doi.org/10.31917/1903292.

Le E.P.V., Wang Y., Huang Y. et al. Artificial intelligence in breast imaging // Clin Radiol. – 2019. – Vol. 74. – № 5. – P. 357–366. – doi:10.1016/j.crad.2019.02.006.

Trister A.D., Buist D.S.M., Lee C.I. Will Machine Learning Tip the Balance in Breast Cancer Screening? // JAMA Oncol. – 2017. – Vol. 3. – № 11. – P. 1463–1464. – doi:10.1001/jamaoncol.2017.0473.

Ганцев Ш.Х., Франц М.В. Искусственный интеллект в онкологии: взгляд в будущее // Практическая онкология. – 2019. – Т. 20 (1). – С. 21–28. – doi.org/10.31917/2001021.

McKinney S.M., Sieniek M., Godbole V. et al. International evaluation of an AI system for breast cancer screening // Nature. – 2020. – Vol. 577. – № 7788. – P. 89–94. – doi:10.1038/s41586-019-1799-6.

Houssami N., Kirkpatrick-Jones G., Noguchi N. et al. Artificial Intelligence (AI) for the early detection of breast cancer: a scoping review to assess AI's potential in breast screening practice // Expert Rev Med Devices. – 2019. – Vol. 16. – № 5. – P. 351–362. – doi:10.1080/17434440.2019.1610387.

Егорова А.В. Цифровизация системы здравоохранения регионов в условиях цифровой экономики // Научный ежегодник Центра анализа и прогнозирования. – 2018. – №2. – C. 256–261.

Rodriguez-Ruiz A., Lång K., Gubern-Merida A. et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists // J Natl Cancer Inst. – 2019. – Vol. 111. – №9. – P. 916–922. – doi:10.1093/jnci/djy222.

Kretz T., Anton M., Schaeffter T., Elster C. et al. Determination of contrast-detail curves in mammography image quality assessment by a parametric model observer // Physica medica. – 2019. – Vol. 62. – P. 120–128. – doi: https://doi.org/10.1016/j.ejmp.2019.05.008.

Lakhani P., Prater A.B., Hutson R.K. et al. Machine Learning in Radiology: Applications Beyond Image Interpretation // J Am Coll Radiol. – 2018. – Vol. 15. – №2. – P. 350–359. – doi:10.1016/j.jacr.2017.09.044.

Новикова Т.С., Доможирова А.С., Аксенова И.А. Состояние профилактических программ в онкологии в Челябинской области // Онкология. Журнал им. П.А. Герцена. – 2017. – Т. 6 (5). – С. 50–55. – doi: https://doi.org/10.17116/onkolog20176550-55.

Li Y., Ye X., Li. Y. Image quality assessment using deep convolutional networks // AIP Advances. – 2017. – Vol. 7. – №12. – doi: https://doi.org/10.1063/1.5010804.

Çelik L. Role of Artificial Intelligence in Imaging: From A Radiologist's Point of View with A Focus on Breast Imaging // Anatol J Cardiol. – 2019. – Vol. 22 (Suppl 2). – P. 13–14. – doi:10.14744/AnatolJCardiol.2019.35625.

Lee J.G., Jun S., Cho Y.W. et al. Deep Learning in Medical Imaging: General Overview // Korean J Radiol. – 2017. – Vol. 18, № 4. – P. 570–584. – doi:10.3348/kjr.2017.18.4.57.

Sasaki M., Tozaki M., Rodríguez-Ruiz A. et al. Artificial intelligence for breast cancer detection in mammography: experience of use of the ScreenPoint Medical Transpara system in 310 Japanese women // Breast Cancer. – 2020. – Vol. 27. – № 4. – P. 642–651. –https://doi.org/10.1007/s12282-020-01061-8.

Lunit Insight MMG. Fore breast cancer detection. / Electronic data. — Seoul. — URL: https://www.lunit.io/en/product/insight_mmg/ (accessed: 18.07.20).

Kheiron Medical Technologies. Meet Mia™ Mammography Intelligent Assessement. / Electronic data. — London. — URL: https://www.kheironmed.com/meet-mia (accessed: 18.07.20).

Curemetrix. Pursuing A New Standard For Breast Health Exams / Electronic data. — California. — URL: https://curemetrix.com/ (accessed: 18.07.20).

Цельс. Маммография. Искусственный интеллект для выявления онкологии на ранней стадии. [Электронный ресурс]. — Электрон. дан. — Калуга. — URL: https://celsus.ai/products-mammography/ (дата обращения: 18.07.20).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2020