Mirna expression profiling of anaplastic thyroid cancer
pdf (Русский)

Keywords

anaplastic thyroid cancer
microRNA

How to Cite

Knyazeva, M., Zabegina, L., Sidina, E., Karizky, A., Tsyrlina, E., Atrem’eva, A., Kuznetsova, I., Vorobyev, S., & Malek, A. (2022). Mirna expression profiling of anaplastic thyroid cancer. Voprosy Onkologii, 67(1), 70–76. https://doi.org/10.37469/0507-3758-2021-67-1-70-76

Abstract

Introduction: Malignant transformation of follicular epithelium of the thyroid gland is associated with specific alterations of miRNA profile. Evaluation of miRNAs expression changes is being applied for primary or differential diagnostic of thyroid nodes. Anaplastic thyroid cancer (ATC) is relatively rare form of thyroid cancer with high malignant potency and rate of lethality. Investigation of miRNAs role in ATC might provide with soul for development of new diagnostic and therapeutic approaches. Goal: To analyze expression profile of miRNA in ATC and to identify miRNAs involved in pathogenesis of ATC. Material and Methods: Samples of ATC (n.20) and normal thyroid tissue (n. 22) were included in the study, expression levels of 85 cancer-associated miRNAs were analyzed by RT-PCR. Results: Expression of miR-375, miR-1246 and miR-21 is activated while expression of miR-Let7b, miR-125b and miR-181a is suppressed in cells of ATC. Conclusions: Further investigation of miRNA involvement into carcinogenesis of ATC is needed for development of new diagnostic and therapeutic approaches.

https://doi.org/10.37469/0507-3758-2021-67-1-70-76
pdf (Русский)

References

Samsonov R., Burdakov V., Shtam T. et al.: Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer. Tumour Biol. 2016; 37(9):12011-12021.

Nikiforova M.N., Chiosea S.I., Nikiforov Y.E. MicroRNA expression profiles in thyroid tumors. Endocr Pathol. 2009; 20(2):85-91.

Nikiforov Y.E. Role of Molecular Markers in Thyroid Nodule Management: Then and Now. Endocr Pract. 2017; 23(8):979-988.

Sciacchitano S., Lavra L., Ulivieri A. et al. Comparative analysis of diagnostic performance, feasibility and cost of different test-methods for thyroid nodules with indeterminate cytology. Oncotarget. 2017; 8(30):49421-49442.

Seshadri K.G. Anaplastic Cancer of the Thyroid: The Viper in the Pit. Indian J Endocrinol Metab. 2019; 23(1):1-2.

Haddad R.I., Lydiatt W.M., Ball D.W. et al. Anaplastic Thyroid Carcinoma, Version 2.2015. J Natl Compr Canc Netw. 2015; 13(9):1140-1150.

Воробьев С.В.: Морфологическая диагностика заболеваний щитовидной железы (цитология для патологов, патология для цитологов), СПб: КОСТА; 2014:104.

Smallridge R.C., Copland J.A. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol). 2010; 22(6):486-497.

Bonhomme B., Godbert Y., Perot G. et al. Molecular Pathology of Anaplastic Thyroid Carcinomas: A Retrospective Study of 144 Cases. Thyroid. 2017; 27(5):682-692.

Коренюк В.А., Сосновский В.А., Мануилова А.А. et al.: Клинико-морфологический анализ анапластического рака щитовидной железы Молодой ученый. 2018; 16:31-32.

Bozorg-Ghalati F., Hedayati M.: Molecular Biomarkers of Anaplastic Thyroid Carcinoma. Curr Mol Med. 2017; 17(3):181-188.

Pishkari S., Paryan M., Hashemi M. et al. The role of microRNAs in different types of thyroid carcinoma: a comprehensive analysis to find new miRNA supplementary therapies. J Endocrinol Invest. 2018; 41(3):269-283.

Bu Q., You F., Pan G. et al. MiR-125b inhibits anaplastic thyroid cancer cell migration and invasion by targeting PIK3CD. Biomed Pharmacother. 2017; 88:443-448.

Boufraqech M., Nilubol N., Zhang L. et al.: miR30a inhibits LOX expression and anaplastic thyroid cancer progression. Cancer Res. 2015; 75(2):367-377.

Zhang X., Liu L., Deng X. et al. MicroRNA 483-3p targets Pard3 to potentiate TGF-beta1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene. 2019; 38(5):699-715.

Liu J., Feng L., Zhang H. et al.: Effects of miR-144 on the sensitivity of human anaplastic thyroid carcinoma cells to cisplatin by autophagy regulation. Cancer Biol Ther. 2018; 19(6):484-496.

Xu Y., Han Y.F., Ye B. et al. miR-27b-3p is Involved in Doxorubicin Resistance of Human Anaplastic Thyroid Cancer Cells via Targeting Peroxisome Proliferator-Activated Receptor Gamma. Basic Clin Pharmacol Toxicol. 2018; 123(6):670-677.

Androvic P., Valihrach L., Elling J. et al.Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic acids research. 2017;45(15):e144.

Колесников Н.Н., Титов С.Е., Веряскина Ю.А. и др. Повышение точности и информативности тонкоигольной аспирационной пункционной биопсии опухолей молочной железы путем анализа микроРНК в материале цитологического мазка. Успехи молекулярной онкологии. 2016; 3(1):44-52.

Архангельская П.А., Самсонов Р.Б., Штам Т.А. и др. Оценка экспрессии 4 микроРНК в цитологических препаратах в качестве дополнительного метода диагностики рака шейки матки. Опухоли женской репродуктивной системы. 2017; 13(3):63-72.

Nagaiah G., Hossain A., Mooney C.J. et al. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. Journal of oncology. 2011;2011:542358.

Damanakis A.I., Eckhardt S., Wunderlich A. et al. MicroRNAs let7 expression in thyroid cancer: correlation with their deputed targets HMGA2 and SLC5A5. Journal of cancer research and clinical oncology. 2016; 142(6):1213-1220.

Malek A., Bakhidze E., Noske A. et al. HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int J Cancer. 2008; 123(2):348-356.

Zhang S., Mo Q., Wang X. Oncological role of HMGA2 (Review). International journal of oncology. 2019; 55(4):775-788.

Титов С.Е., Иванов М.К., Цивликова Е.В. и др. Анализ относительной экспрессии гена HMGA2 и онкогенной микроРНК-221 в цитологических препаратах, полученных при тонкоигольной аспирационной биопсии узлов щитовидной железы. Успехи молекулярной онкологии. 2017; 4:24-31.

Allegri L., Rosignolo F., Mio C. et al. Effects of nutraceuticals on anaplastic thyroid cancer cells. Journal of cancer research and clinical oncology. 2018; 144(2):285-294.

Haghpanah V., Fallah P., Tavakoli R. et al. Antisense-miR-21 enhances differentiation/apoptosis and reduces cancer stemness state on anaplastic thyroid cancer. Tumour Biol. 2016; 37(1):1299-1308.

Frezzetti D., De Menna M., Zoppoli P. et al. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene. 2011; 30(3):275-286.

Khatami F., Tavangar S.M. Liquid Biopsy in Thyroid Cancer: New Insight. International journal of hematology-oncology and stem cell research. 2018; 12(3):235-248.

Sandulache V.C., Williams M.D., Lai S.Y. et al. Real-Time Genomic Characterization Utilizing Circulating Cell-Free DNA in Patients with Anaplastic Thyroid Carcinoma. Thyroid. 2017; 27(1):81-87.

Lee J.C., Zhao J.T., Gundara J. et al. Papillary thyroid cancer-derived exosomes contain miRNA-146b and miRNA-222. The Journal of surgical research. 2015; 196(1):39-48.

Bi J.W., Zou Y.L., Qian J.T. et al.: MiR-599 serves a suppressive role in anaplastic thyroid cancer by activating the T-cell intracellular antigen. Experimental and therapeutic medicine. 2019; 18(4):2413-2420.

Chen J., Zhao D., Meng Q. Knockdown of HCP5 exerts tumor-suppressive functions by up-regulating tumor suppressor miR-128-3p in anaplastic thyroid cancer. Biomed Pharmacother. 2019; 116:108966.

Wang F., Li Z., Sun B. miR-544 inhibits the migration and invasion of anaplastic thyroid cancer by targeting Yin Yang-1. Oncology letters. 2019; 17(3):2983-2992.

Maroof H., Islam F., Dong L. et al.: Liposomal Delivery of miR-34b-5p Induced Cancer Cell Death in Thyroid Carcinoma. Cells. 2018; 7(12).

Fuziwara C.S., Saito K.C., Kimura E.T. Thyroid follicular cell loss of differentiation induced by miRNA miR-17-92 cluster is attenuated by CRISPR/Cas9n gene silencing in anaplastic thyroid cancer. Thyroid. 2019.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021