The role of EGFR mutation testing in the choice for surgical tactics in NSCLC treatment
##article.numberofdownloads## 11
##article.numberofviews## 190
pdf (Русский)

Keywords

lung cancer
NSCLC
EGFR TKI
EGFR mutation
ctDNA
surgical treatment
targeted therapy
resistance

How to Cite

Slugin, E., Levchenko, E., Imyanitov, E., & Lopushanskaya, O. (2021). The role of EGFR mutation testing in the choice for surgical tactics in NSCLC treatment. Voprosy Onkologii, 67(3), 315–322. https://doi.org/10.37469/0507-3758-2021-67-3-315-322

Abstract

Lung cancer is the most commonly diagnosed cancer in the world, and currently the mortality rate from this disease is one of the highest. The detection of EGFR mutation plays an important role in the choice of treatment in clinical practice. As already known, over the past decade, EGFR mutations have been a predictive factor for the prescription of tyrosine kinase inhibitors (EGFR TKIs) in patients with advanced non-small cell lung cancer (NSCLC). The role of EGFR mutation as a prognostic factor for patients undergoing surgery and the possibility of using surgery to overcome the resistance mechanisms that develop in response to EGFR TKIs remain unexplored. This literature review examines key aspects of the EGFR mutation as a factor that can influence the treatment and using the surgical method.

https://doi.org/10.37469/0507-3758-2021-67-3-315-322
##article.numberofdownloads## 11
##article.numberofviews## 190
pdf (Русский)

References

World Health Organization. International agency for research on cancer. https: // doi: gco.iarc.fr/today/fact-sheets-cancers

Kaprin AD, Starinskiy VV, Petrova GV. The status of cancer care for the population of Russia in 2018. Moskow: MNIOI them. P.A. Herzen — branch of the FSBI «NMITs of Radiology» of the Ministry of Health of Russia, 2019.

Blackhall F, Frese KK, Simpson K et al. Will liquid biopsies improve outcomes for patients with small-cell lung cancer? // Lancet Oncol. 2018;19(9):470–481. https: // doi: 10.1016/S1470-2045(18)30455-8

Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma // N Engl J Med. 2009;361(10):947–57. https: // doi: 10.1056/NEJMoa0810699

Kwak EL, Bang YJ, Camidge DR et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer // N Engl J Med. 2010;363(18):1693–703. https: // doi: 10.1056/NEJMoa1006448

Fukuoka M, Yano S, Giaccone G et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) // J Clin Oncol. 2003;21(12):2237–2246. https: // doi: 10.1200/JCO.2003.10.038

Kris MG, Natale RB, Herbst RS et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial // JAMA. 2003;290(16):2149–2158. https: // doi: 10.1001/jama.290.16.2149

Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib // N Engl J Med. 2004;350(21):2129–2139. https: // doi: 10.1056/NEJMoa040938

Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy // Science. 2004;304(5676):1497–1500. https: // doi: 10.1126/science.1099314

Imyanitov EN, Demidova IA, Gordiev MG et al. Distribution of EGFR Mutations in 10,607 Russian Patients with Lung Cancer // Mol Diagn Ther. 2016;20(4):401–406. https: // doi: 10.1007/s40291-016-0213-4

Eberhard DA, Giaccone G, Johnson BE et al. Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting // J Clin Oncol. 2008;26(6):983–994. https: // doi: 10.1200/JCO.2007.12.9858

Pao W, Ladanyi M. Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method // Clin Cancer Res. 2007;13(17):4954–4955. https: // doi: 10.1158/1078-0432.CCR-07-1387

Willmore-Payne C, Holden JA, Layfield LJ. Detection of epidermal growth factor receptor and human epidermal growth factor receptor 2 activating mutations in lung adenocarcinoma by high-resolution melting amplicon analysis: correlation with gene copy number, protein expression, and hormone receptor expression // Hum Pathol. 2006;37(6):755–763. https: // doi: 10.1016/j.humpath.2006.02.004

Nomoto K, Tsuta K, Takano T et al. Detection of EGFR mutations in archived cytologic specimens of nonsmall cell lung cancer using high-resolution melting analysis // Am J Clin Pathol. 2006;126(4):608–615. https: // doi: 10.1309/N5PQNGW2QKMX09X7

Fukui T, Ohe Y, Tsuta K et al. Prospective study of the accuracy of EGFR mutational analysis by high-resolution melting analysis in small samples obtained from patients with nonsmall cell lung cancer // Clin Cancer Res. 2008;14(15):4751–4757. https: // doi: 10.1158/1078-0432.CCR-07-5207

Janne PA, Borras AM, Kuang Y et al. A rapid and sensitive enzymatic method for epidermal growth factor receptor mutation screening // Clin Cancer Res. 2006;12(3 Pt 1):751–758. https: // doi: 10.1158/1078-0432.CCR-05-2047

Nagai Y, Miyazawa H, Tanaka T et al. Genetic heterogeneity of the epidermal growth factor receptor in nonsmall cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid–locked nucleic acid PCR clamp // Cancer Res. 2005;65(16):7276–7282. https: // doi: 10.1158/0008-5472.CAN-05-0331

Li J, Wang L, Mamon H et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing // Nat Med. 2008;14(5):579–584. https: // doi: 10.1038/nm1708

Yoshimasu T, Maebeya S, Suzuma T et al. Disappearance curves for tumor markers after resection of intrathoracic malignancies // Biol Markers. 1999 Apr-Jun;14(2):99–105.

Fournie GJ, Courtin JP, Laval F et al. Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours // Cancer Lett. 1995;91(2):221–227. https: // doi: 10.1016/0304-3835(95)03742-f

Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells // Cancer Res. 2001;61(4):1659–1665.

Stroun M, Lyautey J, Lederrey C et al. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release // Clin Chim Acta. 2001;313(1–2):139–142. https: // doi: 10.1016/s0009-8981(01)00665-9

Fan HC, Blumenfeld YJ, Chitkara U et al. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing // Clin Chem. 2010;56(8):1279–1286. https: // doi: 10.1373/clinchem.2010.144188

Bronkhorst AJ, Wentzel JF, Aucamp J et al. Characterization of the cell-free DNA released by cultured cancer cells // Biochim Biophys Acta. 2016;1863(1):157–165. https: // doi: 10.1016/j.bbamcr.2015.10.022

Lebofsky R, Decraene C, Bernard V et al. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types // Mol Oncol. 2015;9(4):783–790. https: // doi: 10.1016/j.molonc.2014.12.003

Szpechcinski A, Chorostowska-Wynimko J, Struniawski R et al. Cell-free DNA levels in plasma of patients with non-small-cell lung cancer and inflammatory lung disease // Br J Cancer. 2015;113(3):476–483. https: // doi: 10.1038/bjc.2015.225

Tissot C, Toffart AC, Villar S et al. Circulating free DNA concentration is an independent prognostic biomarker in lung cancer // Eur Respir J. 2015;46(6):1773–1780. https: // doi: 10.1183/13993003.00676-2015

Li BT, Drilon A, Johnson ML et al. A prospective study of total plasma cell-free DNA as a predictive biomarker for response to systemic therapy in patients with advanced non-small-cell lung cancers // Ann Oncol. 2016;27(1):154–159. https: // doi: 10.1093/annonc/mdv498

Del Re M, Tiseo M, Bordi P et al. Contribution of KRAS mutations and c. 2369C>T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA // Oncotarget. 2017;8(8):13611–13619. https: // doi: 10.18632/oncotarget.6957

Hu W, Yang Y, Zhang L et al. Post surgery circulating free tumor DNA is a predictive biomarker for relapse of lung cancer // Cancer Med. 2017;6(5):962–974. https: // doi: 10.1002/cam4.980

Chen K, Zhang J, Guan T et al. Comparison of plasma to tissue DNA mutations in surgical patients with non–small cell lung cancer // J Thorac Cardiovasc Surg. 2017;154(3):1123–1131. https: // doi: 10.1016/j.jtcvs.2017.04.073

Tsao MS, Sakurada A, Cutz J et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome // N Engl J Med. 2005;353(2):133–44. https: // doi: 10.1056/NEJMoa050736

Eberhard DA, Johnson BE, Amler LC et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib // J Clin Oncol. 2005;23(25):5900–5909. https: // doi: 10.1200/JCO.2005.02.857

Arcila ME, Nafa K, Chaft JE et al. EGFR Exon 20 Insertion Mutations in Lung Adenocarcinomas: Prevalence, Molecular Heterogeneity, and Clinicopathologic Characteristics // Mol Cancer Ther. 2013;12(2):220–229. https: // doi: 10.1158/1535-7163.MCT-12-0620

Sharma N, Graziano S. Overview of the LUX-Lung clinical trial program of afatinib for non-small cell lung cancer // Cancer Treat Rev. 2018;69:143–151. https: // doi: 10.1016/j.ctrv.2018.06.018

Lee Y, Kim TM, Kim DW et al. Preclinical modeling of osimertinib for NSCLC with EGFR Exon 20 insertion mutations // J Thorac Oncol. 2019;14(9):1556–1566. https: // doi: 10.1016/j.jtho.2019.05.006

Sasaki H, Shimizu S, Endo K et al. EGFR and erbB2 mutation status in Japanese lung cancer patients // Int J Cancer. 2006;118(1):180–184. https: // doi: 10.1002/ijc.21301

Kobayashi N, Toyooka S, Ichimura K et al. Non-BAC component but not epidermal growth factor receptor gene mutation is associated with poor outcomes in small adenocarcinoma of the lung // J Thorac Oncol. 2008;3(7):704–710. https: // doi: 10.1097/JTO.0b013e31817c6080

Nose N, Sugio K, Oyama T et al. Association between estrogen receptor-beta expression and epidermal growth factor receptor mutation in the postoperative prognosis of adenocarcinoma of the lung // J Clin Oncol. 2009;27(3):411–417. https: // doi: 10.1200/JCO.2008.18.3251

Kosaka T, Yatabe Y, Onozato R et al. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma // J Thorac Oncol. 2009;4(1):22–29. https: // doi: 10.1097/JTO.0b013e3181914111

Lee YJ, Park I.K, Park MS et al. Activating mutations within the EGFR kinase domain: a molecular predictor of disease-free survival in resected pulmonary adenocarcinoma // J Cancer Res Clin Oncol. 2009;135(12):1647–1654. https: // doi: 10.1007/s00432-009-0611-7

Matsumura Y, Owada Y, Yamaura T et al. Epidermal growth factor receptor gene mutation as risk factor for recurrence in patients with surgically resected lung adenocarcinoma: a matched-pair analysis // Interact Cardiovasc Thorac Surg. 2016;23(2):216–222. https: // doi: 10.1093/icvts/ivw116

D'Angelo SP, Janjigian YY, Ahye N et al. Distinct Clinical Course of EGFR-Mutant Resected Lung Cancers: Results of Testing of 1118 Surgical Specimens and Effects of Adjuvant Gefitinib and Erlotinib // J Thorac Oncol. 2012;7(12):1815–1822. https: // doi: 10.1097/JTO.0b013e31826bb7b2

Yotsukura M, Yasuda H, Shigenobu T et al. Clinical and pathological characteristics of EGFR mutation in operable early stage lung adenocarcinoma // Lung Cancer. 2017;109:45–51. https: // doi: 10.1016/j.lungcan.2017.04.014

Jao K, Tomasini P, Kamel-Reid S et al. The prognostic effect of single and multiple cancer-related somatic mutations in resected non-small-cell lung cancer // Lung Cancer. 2018;123:22–29. https: // doi: 10.1016/j.lungcan.2018.06.023

Ito M, Miyata Y, Kushitani K et al. Increased risk of recurrence in resected EGFR-positive pN0M0 invasive lung adenocarcinoma // Thorac Cancer. 2018;9(12):1594–1602. https: // doi: 10.1111/1759-7714.12866

Sakanoue I, Hamakawa H, Kaji R et al. Sleeve lobectomy for lung adenocarcinoma treated with neoadjuvant afatinib // J Thorac Dis. 2018;10(3):170–174. https: // doi: 10.21037/jtd.2018.02.03

Hishida T, Yoshida J, Aokage K et al. Long-term outcome of surgical resection for residual or regrown advanced non-small cell lung carcinomas following EGFR-TKI treatment: report of four cases // Gen Thorac Cardiovasc Surg. 2016;64(7):429–433. https: // doi: 10.1007/s11748-014-0508-5

Takamochi K, Suzuki K, Sugimura H et al. Surgical resection after gefitinib treatment in patients with lung adenocarcinoma harboring epidermal growth factor receptor gene mutation // Lung Cancer. 2007;58(1):149–155. https: // doi: 10.1016/j.lungcan.2007.04.016

Kappers I, Klomp HM, Burgers JA et al. Neoadjuvant (induction) erlotinib response in stageIIIA non-small-cell lung cancer // J Clin Oncol. 2008;26(25):4205–4207. https: // doi: 10.1200/JCO.2008.16.3709

Levchenko EV, Moiseyenko VM, Matsko DE et al. Down-staging of EGFR mutation-positive advanced lung carcinoma with gefitinib followed by surgical intervention: follow-up of two cases // Onkologie. 2009;32(11):674–677. https: // doi: 10.1159/000242220

Hishida T, Nagai K, Mitsudomi T et al. Salvage surgery for advanced non-small cell lung cancer after response to gefitinib // J Thorac Cardiovasc Surg. 2010;140(5):69–71. https: // doi: 10.1016/j.jtcvs.2010.06.035

Shen H, Zhong X, Ge X.Q et al. Surgical resection of lung adenocarcinoma without EGFR mutation after neoadjuvant gefitinib treatment // Clin Respir J. 2010;4(3):192–193. https: // doi: 10.1111/j.1752-699X.2009.00167.x

Liu M, Jiang G, He W et al. Surgical resection of locally advanced pulmonary adenocarcinoma after gefitinib therapy // Ann Thorac Surg. 2011;92(1):11–12. https: // doi: 10.1016/j.athoracsur.2011.02.021

Ong M, Kwan K, Kamel-Reid S et al. Neoadjuvant erlotinib and surgical resection of a stage iiia papillary adenocarcinoma of the lung with an L861Q activating EGFR mutation // Curr Oncol. 2012;19(3):222–226. https: // doi: 10.3747/co.19.908

Hashimoto K, Horinouchi H, Ohtsuka T et al. Salvage surgery for a super-responder by gefitinib therapy for advanced lung cancer // Gen Thorac Cardiovasc Surg. 2012;60(12):851–854. https: // doi: 10.1007/s11748-012-0087-2

Marech I, Vacca A, Gnoni A et al. Surgical resection of locally advanced epidermal growth factor receptor (EGFR) mutated lung adenocarcinoma after gefitinib and review of the literature // Tumori. 2013;99(5):241–244. https: // doi: 10.1700/1377.15324

Funakoshi Y, Takeuchi Y, Maeda H. Pneumonectomy after response to gefitinib treatment for lung adenocarcinoma // Asian Cardiovasc Thorac Ann. 2013;21(4):482–484. https: // doi: 10.1177/0218492312462834

López-González A, Almagro E, Salas C et al. Use of a tyrosine kinase inhibitor as neoadjuvant therapy for non-small cell lung cancer: a case report // Respir Med Case Rep. 2013;9:8–10. https: // doi: 10.1016/j.rmcr.2013.02.002

Yamamoto Y, Kodama K, Maniwa T et al. Surgical resection of advanced non-small cell lung cancer after a response to EGFR TKI: presentation of two cases and a literature review // J Cardiothorac Surg. 2017 Nov 23;12(1):98. https: // doi: 10.1186/s13019-017-0668-3

Yu HA, Sima CS, Huang J et al. Local therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors // J Thorac Oncol. 2013;8(3):346–351. https: // doi: 10.1097/JTO.0b013e31827e1f83

Gomez DR, Blumenschein GRJr, Lee JJ et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study // Lancet Oncol. 2016;17(12):1672–1682. https: // doi: 10.1016/S1470-2045(16)30532-0

Westover D, Zugazagoitia J, Cho BC et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors // Ann Oncol. 2018;29(suppl_1):10–19. https: // doi: 10.1093/annonc/mdx703

Imyanitov EN. Molecular targets in lung cancer: current status // Practical oncology. 2018;19(2):93–104. https: // doi: https://www.doi.org/10.31917/1902093

Imyanitov EN. General concepts of targeted therapy // Practical oncology. 2010:11(3):123–130.

Cross DA, Ashton SE, Ghiorghiu S et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer // Cancer Discov. 2014;4(9):1046–1061. https: // doi: 10.1158/2159-8290.CD-14-0337

Jänne PA, Yang JC-H, Kim D-W et al. AZD9291 in EGFR inhibitor–resistant non–small-cell lung cancer // N Engl J Med. 2015;372(18):1689–1699. https: // doi: 10.1056/NEJMoa1411817

Mok TS, Wu Y-L, Ahn M-J et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer // N Engl J Med. 2017;376(7):629–640. https: // doi: 10.1056/NEJMoa1612674

Yu HA, Sima CS, Huang J et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors // J Thorac Oncol. 2013;8(3):346–351. https: // doi: 10.1097/JTO.0b013e31827e1f83

Ragulin UA, Smolenov EI, Usachev VS, Aphonin GV. Targeted therapy of locally advanced non-small cell lung cancer with EGFR mutation // Oncology. Journal PA. Hercen, 2016;2, 48–53.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021