Abstract
The review examines information about factors of natural origin that are promising for the purposes of clinical oncology, and as well as some modern approaches to the development of effective methods of phytotherapy for the treatment of cancer patients. The data on a number of the most famous and widespread phytochemicals in nature, which are currently undergoing the first phases of clinical trials, are presented. The article analyzes information about domestic studies to identify promising antitumor factors and means of accompanying treatment, known and original approaches to the development of effective regimens of phytotherapy. Some results of studies carried out with the participation of the authors in a number of research institutions in Russia - the All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (FGBNU VILAR, Moscow), National Medical Research Center of Oncology named after N.N. Blokhin (N.N. Blokhin National Medical Research Center of Oncology, Moscow), National Medical Research Center of Oncology in Rostov-on-Don, Southern Scientific Center of the Russian Academy of Sciences (SSC RAS, Rostov-on-Don ), Southern Federal University (SFedU, Rostov-on-Don). The review provides information on the literature indexed in the Scopus, WoS, Pubmed, RSCI databases. More than 60% of works were published in the last 5 years, 40% of works were published in the last 3 years.
References
Бочарова О.А., Карпова Р.В., Бочаров Е.В. и др. Фитоадаптогены в биотерапии опухолей и гериатрии. (Часть 2) // Российский биотерапевтический журнал. 2020;9(3):12–20. doi:10.17650/1726-9784-2020-19-3-12-20 [Bocharova OA, Karpova RV, Bocharov EV et al. Phytoadaptogens in the tumours biotherapy and geriatrics (part 1) // Russian Journal of Biotherapy. 2020;19(2):13–21 (In Russ.)]. doi:10.17650/1726-9784-2019-19-2-13-21
Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019 // J. Nat. Prod. 2020;83(3):770–803. doi:10.1021/acs.jnatprod.9b01285
Dehelean CA, Marcovici I Soica C, Marius Mioc M et al. Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy // Molecules. 2021;26:1109. doi:10.3390/molecules26041109
Aung TN, Qu Z, Kortschak RD, Adelson DL. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. I // nt. J. Mol. Sci. 2017, 18:656. doi:10.3390/ijms18030656
Lin SR, Chang CH, Hsu CF et al. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence // Br. J. Pharmacol. 2020;177:1409–1423. doi:10.1111/bph.14816
Tewari D, Rawat P, Singh PK. Adverse drug reactions of anticancer drugs derived from natural sources // Food Chem. Toxicol. 2019;123:522–535. doi:10.1016/j.fct.2018.11.041
Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents // Med. Princ. Pract. 2016;25 (Suppl. 2):41–59. doi:10.1159/000443404
Толкачев О.Н., Толкачев В.Н., Шейченко О.П. и др. Растительные препараты на основе индольных алкалоидов, их производных и аналогов: биологическая активность // Вопросы биологической, медицинской и фармацевтической химии. 2018;21(9):3–14. doi:10.29296/25877313-2018-09-01 [Tolkachev ON, Tolkachev VN, Sheichenko OP et al. In-dolealkaloids and their analogues: biological activity study // Problems of biological, medical and pharmaceutical chemistry. 2018;21(9):3–14 (In Russ.)]. doi:10.29296/25877313-2018-09-01
Сасов С.А., Тотоева Н.Н., Толкачев В.Н. и др. Гидролизуемые галло-эллаго-таннины кипрея узколистного (Chamaenerion angustifolium (L.) из биоколлекции питомника ботанического сада ФГБНУ ВИЛАР ― перспективный источник для получения цитотоксических средств // Вопросы биологической, медицинской и фармацевтической химии. 2019;22(1):28–34. doi:10.29296/25877313-2019-01-04 [Sasov SA, Totoeva NN, Tolkachev VN et al. Hydrolizablegallo-ellagi-tannins of Chamaenerion angustifolium (L.) Are prospecting cytotoxic sources for use in oncology // Problems of biological, medical and pharmaceutical chemistry. 2019;22(1):28–34 (In Russ.)]. doi:10.29296/25877313-2019-01-04
Seca AML, Pinto DCGA. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application // Int. J. Mol. Sci. 2018;19:263. doi:10.3390/ijms19010263
Jacobo-Herrera NJ, Jacobo-Herrera FE, Zentella-Dehesa A et al. Medicinal plants used in Mexican traditional medicine for the treatment of colorectal cancer // Journal of Ethnopharmacology. 2016;179:391–402. doi:10.1016/j.jep.2015.12.042
El-Seedi HR, Yosri N, Khalifa SAM et al. Exploring natural products-based cancer therapeutics derived from egyptian flora // J. Ethnopharmacol. 2021;269:113626. doi:10.1016/j.jep.2020.113626
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence // Oncotarget 2016;7:52517–5. doi:10.18632/oncotarget.9593.2529
de Melo FHM, Oliveira JS, Sartorelli VOB, Montor WR. Cancer chemoprevention: Classic and epigenetic mechanisms inhibiting tumorigenesis. What have we learned so far? // Front Oncol. 2018;8:644. doi:10.3389/fonc.2018.00644
Singh AP, Singh R, Verma SS et al. Health, benefits of resveratrol: Evidence from clinical studies // Med. Res. Rev. 2019;39:1851–1891. doi:10.1002/med.21565
Ranjan AP, Mukerjee A, Helson L et al. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: Inhibition of tumor growth and angiogenesis // Anticancer Res. 2013;33:3603–3609.
Zhang L, Man S, Qiu H et al. Curcumin-cyclodextrin complexes enhanced the anticancer effects of curcumin. Environ // Toxicol. Pharmacol. 2016;48:31–38. doi:10.1016/j.etap.2016.09.021
Song Y, Cai L, Tian Z et al. Phytochemical curcumin-coformulated, silver-decorated melanin-like polydopamine/mesoporous silica composites with improved antibacterial and chemotherapeutic effects against drug-resistant cancer cells // ACS Omega. 2020;5:15083–15094. doi:10.1021/acsomega.0c00912
Kunnumakkara AB, Harsha C, Banik K et al. Is curcumin bioavailability a problem in humans: Lessons from clinical trials // Expert Opin.D rug Metab. Toxicol. 2019;15:705–733. doi:10.1080/17425255.2019.1650914
Lazzeroni M, Guerrieri-Gonzaga A, Gandini S et al. A presurgical study of lecithin formulation of green tea extract in women with early breast cancer // Cancer Prev. Res. 2017;10:363–370. doi:10.1158/1940-6207.CAPR-16-0298
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins // Int. J. Mol. Sci. 2020;21:1744. doi:10.3390/ijms21051744
Chen Y, Wang XQ, Zhang Q et al. (-)-Epigallocatechin-3-Gallate inhibits colorectal cancer stem cells by suppressing Wnt/_-catenin pathway // Nutrients. 2017;9:572. doi:10.3390/nu9060572
Zan L, Chen Q, Zhang L, Li X. Epigallocatechingallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25 // Bioengineered 2019;10:374–382. doi:10.1080/21655979.2019.1657327
Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism // Int. J. Mol. Sci. 2019;20:3177. doi:10.3390/ijms20133177
Tang SM, Deng XT, Zhou J et al. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects // Biomed. Pharmacother. 2020;121:109604. doi:10.1016/j.biopha.2019.109604
Kedhari Sundaram M, Raina R, Afroze N et al. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells // Biosci. Rep. 2019;39(8):BSR20190720. doi:10.1042/BSR20190720
Ward AB, Mir H, Kapur N et al. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting antiapoptotic pathways // World J. Surg. Oncol. 2018;16:108. doi:10.1186/s12957-018-1400-z
Sturza A, Pavel I, Ancusa S et al. Quer-cetin exerts an inhibitory effect on cellular bioenergetics of the B164A5 murine melanoma cell line // Mol. Cell Biochem. 2018;447:103–109. doi:10.1007/s11010-018-3296-x
Ben Sghaier M, Pagano A, Mousslim M et al. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells // Biomed.Pharmacother.2016;84:1972–1978. doi:10.1016/j.biopha.2016.11.001
Nouri Z, Fakhri S, Nouri K et al. Targeting multiple signaling pathways in cancer: The rutin therapeutic approach // Cancers. 2020;12:2276. doi:10.3390/cancers12082276
Circioban D, Ledeti A, Vlase G et al. Thermal degradation, kinetic analysis and evaluation of biological activity on human melanoma for artemisinin // J. Therm. Anal. Calorim. 2018;134:741–748. doi:10.1007/s10973-018-7497-z
Jiang F, Zhou JY, Zhang D et al. Artesunate induces apoptosis and autophagy in HCT116 colon cancer cells, and autophagy inhibition enhances the artesunate-induced apoptosis // Int. J. Mol. Med. 2018;42:1295–1304. doi:10.3892/ijmm.2018.3712
Guan X, Guan Y. Artemisinin induces selective and potent anticancer effects in drug resistant breast cancer cells by inducing cellular apoptosis and autophagy and G2/M cell cycle arrest // J. BUON. 2020;25:1330–1336.
Wong YK, Xu C, Kalesh KA et al. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action // Med. Res. Rev. 2017;37:1492–1517. doi:10.1002/med.21446
Circioban D, Ledeti I, Suta LM et al. Instrumental analysis and molecular modelling of inclusion complexes containing artesunate // J. Therm. Anal. Calorim. 2020;142:1951–1961. doi:10.1007/s10973-020-09975-3
Yoo H, Kim JM, Jo E et al. Modified Panax ginseng extract regulates autophagy by AMPK signaling in A549 human lung cancer cells // Oncol. Rep. 2017;37:3287–3296. doi:10.3892/or.2017.5590
Kim J, Yoo JM, Kim JS et al. Anticancer effect of mountain ginseng // Evid. Based Complement Alternat. Med. 2020. doi:10.1155/2020/2584783
Dai D, Zhang CF, Williams S et al. Ginseng on cancer: Potential role in modulating inflammation-mediated angiogenesis // Am. J. Chin. Med. 2017;45:13–22. doi:10.1142/S0192415X17500021
Ratan ZA, Youn SH, Kwak YS et al. Adaptogenic effects of Panax ginseng on modulation of immune functions // Journal of Ginseng Research. 2021;45(1):32-40. doi:10.1016/j.jgr.2020.09.004
Беспалов В.Г., Александров В.А., Семёнов А.Л. и др. Ингибирующий эффект биоженьшеня на радиационный канцерогенез у крыс // Вопросы онкологии. 2012;58(2):248–252 [Bespalov VG, Semenov VA, Aleksandrov AL et al. Bioginseng inhibitory effect on radiationinduced carcinogenesis in rats // Problems in oncology. 2012;58(2):248–252 (In Russ.)].
Ijaza S, Akhtar N, Shoai M et al. Plant derived anticancer agents: A green approach towards skin cancers // Biomedicine & Pharmacotherapy. 2018;103:1643–1651. doi:10.1016/j.biopha.2018.04.113
Hu J, Yang J, Jiang S et al. Panaxquinquefoliumsaponins protect against cisplatin evoked intestinal injury via ROS-mediated multiple mechanisms // Phytomedicine. 2021;82:153446. doi:10.1016/j.phymed.2020.153446
Varricchi G, Ameri P, Cadeddu C et al. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective // Front Physiol. 2018;9:167. doi:10.3389/fphys.2018.00167
Vasan N, Baselg J, Hyman DM. A view on drug resistance in cancer // Nature 2019;575:299–309. doi:10.1038/s41586-019-1730-1
Gupta SC, Kannappan R, Reuter S et al. Chemosensitization of tumors by resveratrol // Ann. N.Y. Acad. Sci. 2011, 1215:150–160. doi:10.1111/j.1749-6632.2010.05852.x
De Oliveira Júnior RG, Christiane Adrielly AF, da Silva Almeida JRG et al. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms // Fitoterapia. 2018;129:383–400. doi:10.1016/j.fitote.2018.02.025
Efferth T, Li PC, Konkimalla VSB, Kaina B. From traditional Chinese medicine to rational cancer therapy // Trends Mol. Med. 2007;13:353–361. doi:10.1016/j.molmed.2007.07.001
Bouyahya A, Bakri Y, El QKE et al. Antibacterial, antioxidant and antitumor properties of Moroccan medicinal plants: A review // Asian Pacific Journal of Tropical Disease. 2017;7(1):57–64. doi:10.12980/apjtd.7.2017D6-294
Shikov AN, Pozharitskaya ON, Makarov VG et al. Medicinal plants of the Russian Pharmacopoeia; their history and applications // J. Ethnopharm. 2014;154(3):481–536. doi:10.1016/j.jep.2014.04.007
Толкачев О.Н., Вичканова С.А., Шейченко О.П., Фатеева Т.В. Растительные препараты ФГБНУ ВИЛАР на основе алкалоидов: бисбензилизохинолины ― биологическая активность (обзор) // Вопросы биологической, медицинской и фармацевтической химии. 2018;21(11):3–15. doi:10.29296/25877313-2018-11-01 [Tolkachev ON, Vichkanova SA, Sheichenko OP, Fateeva T.V. Alkaloid contain in phytodrugs of VILAR: bisbenzylisoquinolines ― biological activity (review) // Problems of biological, medical and pharmaceutical chemistry. 2018;21(11):3–15 (In Russ.)]. doi:10.29296/25877313-2018-11-01
Дыгай А.М., Зуева Е.П., Разина Т.Г. и др. Система отбора природных соединений для использования в онкологической практике. Опыт работы Института фармакологии СО РАМН // Тихоокеанский медицинский журнал. 2010;2(40):10–15 [Dyigay AM, Zueva EP, Razina TG et al. Nature‑occurring compound collection system in oncological practice. Scientific аchievements of Institute of Pharmacology, Siberian branch of RAMS // Pacific Medical Journal. 2010;2:10–15 (In Rus.)].
Зуева Е.П., Лопатина К.А., Разина Т.Г., Гурьев А.М. Полисахариды в онкологии. Российская академия медицинских наук, Сибирское отделение, Научно-исследовательский институт фармакологии. Томск, 2010 [Zueva EP, Lopatina KA, Razina TG, Guriev AM. Polycarbohydrates in oncology. Russian Academy of Medical Sciences, Siberian Branch, Research Institute of Pharmacology. Tomsk, 2010 (In Rus.)].
Гольдберг Е.Д., Разина Т.Г., Зуева Е.П. и др. Растения в комплексной терапии опухолей. М.: изд-во РАМН, 2008 [Goldberg ED, Razina TG, Zueva EP et al. Plants in complex therapy of turmor treatment. M.: RAMN Publishing House, 2008 (In Russ.)].
Нестерова Ю.В., Поветьева Т.Н., Суслов Н.И. и др. Создание новых лекарственных препаратов на основе алкалоидов и флавоноидов из растений Сибири // Бюллетень экспериментальной биологии и медицины. 2008;S2:30–36 [Nesterova YuV, Povetieva TN, Suslov NI et al. Development of new drugs based on alkaloids and flavonoids from Siberian plants // Bulletin of experimental biology and medicine. 2008;S2:30–36] (In Rus.)].
Пашинский В.Г. Теория фитотерапии. Томск, 2014 [Pashinskij VG. Theory of Phytotherapy. Tomsk, 2014 (In Russ.)].
Safonova EA, Lopatina KA, Razina TG et al. Effects of Tussilago farfara L. Polysaccharides on the Expression of PD-1 (CD279) and PD-L1 (CD274) in Peripheral Blood and Tumor Tissue Lymphocytes in Mice with Lewis Lung Carcinoma // Bull Exp Biol Med. 2020;169:378–382. doi:10.1007/s10517-020-04891-w
Бочарова О.А., Давыдов М.И., Клименков А.А. и др. Перспективы применения фитоадаптогена в лечении распространенного рака желудка // Бюллетень экспериментальной биологии и медицины. 2009;148(7):96-99. doi:10.1007/s10517-009-0652-6 [Bocharova OA, Davydov MI, Klimenkov AA et al. Prospects of using phytoadaptogen in the treatmen tof diffuse stomach cancer // Bulletin of Experimental Biology and Medicine. 2009;148(7):82–85 (In Russ.]. doi:10.1007/s10517-009-0652-6
Луценко С.В., Громовых Т.И., Каширин В.В. и др. Исследование in vitro противоопухолевой и антимикробной активности препарата пэгилированных липосом с сангвинарином // Антибиотики и химиотерапия. 2018;63(3–4):3–7 [Lutsenko SV, Gromovykh TI, Kashirin VV et al. In vitro study of antitumor and antimicrobial activity of a preparation of pegylated liposomes with sanguinarine // Antibiotics and Chemotherapy. 2018;63(3–4):3–7 (In Russ.)].
Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: A Review on Chemical Structure and Clinical Usage // Infect. Disord.Drug Targets. 2018;18(2):105–121. doi:10.2174/1871526517666171017114901
Lin Z-Y, Kuo C, Wu D, Chuang W. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines // The Kaohsiung Journal of Medical Sciences. 2016;32:68-73. doi:10.1016/j.kjms.2015.12.006
Seo JS, Choi YH, Moon JW et al. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells // BMC Cell Biology. 2017;18(1):14. doi:10.1186/s12860-017-0130-3
Chen S-M, Wang B-Y, Lee C-H. Hinokitiol up-regulates miR-494-3p to suppress BMI1 expression and inhibits self-renewal of breast cancer stem/progenitor cells // Oncotarget. 2017;8(44):76057–76068. doi:10.18632/oncotarget.18648
Zhang G, He J, Ye X et al. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma // Cell Death and Disease.2019;10:255. doi:10.1038/s41419-019-1492-6
Bang DN, Sayapin YA, Lam H et al. Synthesis and cytotoxic activity of [ben-zo[b][1,4]oxazepino[7,6,5-de]quinolin-2-yl]-1,3-tropolones // ChemHeterocycl Comp. 2015;51:291–294. doi:10.1007/s10593-015-1697-2
Tkachev VV, Shilov GV, Aldoshin SM, et al. Structure of 2-(benzoxazole-2-yl)- 5,7-di(tert-butyl)-4-nitro-1,3-tropolone // Journal of Structural Chemistry. 2018;59(1):197–200. doi:10.1134/S0022476618010316
Gusakov EA, Topchu LA, Mazitova AM et al. Design, synthesis and biological evaluation of 2-quinolyl-1,3-tropolone derivatives as new anti-cancer agents // RSC Adv. 2021;11:4555–4571. doi:10.1039/d0ra10610k/
Минкин В.И., Кит О.И., Максимов А.Ю. и др. Средство, обладающее цитотоксической активностью в отношении культуры клеток немелкоклеточного рака легких А 549. Патент на изобретение RU, 2741311 C1, 25.01. 2021. Заявка № 2020123736 от 17.07.2020 [Minkin VI, Kit OI, Goncharova AS et al. Agent having cytotoxic activity on non-small-cell lung cancer cell culture a 549. Invention patent RU, 2741311 C1, 25.01. 2021. Application № 2020123736 dated 17.07.2020 (In Russ.)].
Жукова Г.В., Минкин В.И., Гончарова А.С. и др. Некоторые дозозависимые эффекты нового производного трополонового ряда, 2-(6,8-диметил-5-нитро-4-хлорхинолин-2-ил)-5,6,7-трихлор-1,3-трополона, у мышей линии BALB/c nude при его однократном приеме // Современные проблемы науки и образования. 2021;2 [Zhukova GV, Minkin VI, Goncharova AS et al. Some dose-dependent effects of a new tropolone derivative, 2- (6,8-dimethyl-5-nitro-4-chloroquinolin-2-yl) -5,6,7-trichloro-1,3-tropolone under taking once in balb / c mice nude // Modern problems of science and education. 2021;2] (In Russ.)].
Толкачев О.Н., Шейченко О.П., Крепкова Л.В. и др. Растительные препараты ВИЛАР на основе алкалоидов. Часть 1. Семейства Apocynaceae, Papaveraceae, Menispermaceae, Berberidaceae // Вопросы биологической, медицинской и фармацевтической химии. 2014;1:3–15 [Tolkachev O.N, Sheichenko O.P, Krepkova L.V et al. Phytodrugs of VILAR at the basis of alkaloids of Apocynaceae, Papaveraceae, Meinspermaceae, Berberidaceae plants: chemical and technological study. 1 st report // Problems of biological, medical and pharmaceutical chemistry. 2014;1:3–15 (In Russ.)].
Fedotcheva TA, Shimanovskii NL, Sheichenko OP et al. Preparation of a horse chestnut extract with a 50% content of escin and its actions on tumor cell proliferation and isolated mitochondria // Pharmaceutical Chemistry Journal. 2019;53(1):57–64. doi:10.1007/s11094-019-01956-7
Белицкий Г.А., Кирсанов К.И., Лесовая Е.А., Якубовская М.Г. Механизмы антиканцерогенного действия флавоноидов // Успехи молекулярной онкологии. 2014;1(1):56–68 [Belitsky GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Mechanisms of carcinogenesis prevention by flavonoid // Advances in molecular oncology. 2014;1(1):56–68 (in Russ.)].
Jiao R, Liu Y, Gao H et al. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides // Am. J. Chin. Med. 2016;44(3):463–488. doi:10.1142/S0192415X16500269
Федотчева Т.А., Матюшин А.И., Шейченко О.П. и др. Экспериментальная оценка цитотоксического, цитопротекторного и антиоксидантного действия экстракта каштана конского с 50% содержанием эсцина // Экспериментальная и клиническая фармакология. 2019;82(11):15–19. doi:10.30906/0869-2092-2019-82-11-15-19 [Fedotcheva TA, Matyushin AI, Usenko AN et al. Experimentalstudyofthecytotoxic, cytoprotective and antioxidant effects of horse chestnut extract with 50% escincontent // Experimental and clinical pharmacology. 2019;82(11):15–19 (In Russ.)]. doi:10.30906/0869-2092-2019-82-11-15-19
Федотчева Т.А., Федотчева Н.И., Сидельников Н.И. и др. Нуфлеинбисангидрохлорид, обладающий цитотоксической активностью по отношению к опухолевым клеткам человека. Патент RU 2624861 C, 07.07.2017, приоритет от 09.12.2015 (2015152568). [Fedotcheva TA, Fedotcheva NI, Sidelnikov NI et al. Nuflein bisanhydrochloride, with cytotoxic activity related to human tumour cells. Invention patent RU 2624861 C, 07.07.2017. Application No 2015152568, dated 12.09.2015. (In Russ.)].
Сасов С.А., Тотоева Н.Н., Толкачев В.Н. и др. Гидролизуемые галло-эллаго-таннины кипрея узколистного (Chamaenerion angustifolium (l.) Из биоколлекции питомника ботанического сада ФГБНУ ВИЛАР ― перспективный источник для получения цитотоксических средств // Вопросы биологической, медицинской и фармацевтической химии. 2019;22(1):28–34. doi:10.29296/25877313-2019-01-04 [Sasov S.A, Totoeva N.N, Tolkachev V.N et al. Hydrolizable gallo-ellagi-tannins of Chamaenerion angustifolium (L.) Scop. are prospecting cytotoxic sources for use in oncology // Problems of biological, medical and pharmaceutical chemistry. 2019;22(1):28–34 (In Russ.)]. doi:10.29296/25877313-2019-01-04
Савина А.А., Толкачев О.Н., Глызин В.И. и др. Способ получения сангвиритрина. Патент на изобретение RU 2167668 C2, 27.05.2001. Заявка № 99106376/14 от 30.03.1999 [Savina AA, Tolkachev ON, Glyzin VI et al. Method of sanguiritrine preparing. Invention patent RU 2167668 C2, 27.05.2001. Application No 99106376/14, dated 30.03.1999 (In Russ.)].
Толкачев О.Н., Фатеева Т.В., Крепкова Л.В. и др. Отечественные и зарубежные препараты, содержащие сангвинарин: краткая оценка (обзор) // Вопросы биологической, медицинской и фармацевтической химии. 2015;9:3–9 [Tolkachev ON, Fateeva TV, Krepkova LV et al. Domestic and foreign sanguinarine containing drugs: a brief assessment (review) // Problems of biological, medical and pharmaceutical chemistry.2015;9:3–9 (In Russ.)].
Achkar IW, Mraiche F, Mohammad RM, Uddin Sh. Anticancer potential of sanguinarine for various human malignancies // Review.Future Medicinal Chemistry. 2017;9(9). doi:10.4155/fmc-2017-0041
Xu J-Y, Zhao L, Jiao Y et al. Inhibitory effect of sanguinarine on growth of xenograft tumors of gastric cancer GTL-16 cells in nude mice and its related mechanism // Tumor. 2015;5 2):155–160. doi:10.3781/j.issn.1000-7431.2015.11.647
Zhang B, Wang X, Deng J et al. P53-dependent upregulation of miR-16-2 by sanguinarine induces cell cycle arrest and apoptosis in hepatocellular carcinoma // Cancer Lett. 2019;459:50-58. doi:10.1016/j.canlet.
Fan HN, Chen W, Peng SQ et al. Sanguinarine inhibits the tumorigenesis of gastric cancer by regulating the TOX/DNA-PKcs/ KU70/80 pathway // Pathol Res Pract. 2019;(11):152677. doi:10.1016/j.prp.2019.152677
Malikova J, Zdarilova A, Hlobilkova A. Effects of Sanguinarine and Chelerythrine on the cell cycle and apoptosis // Biomed.Rap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2006;150(1):5–12. doi:10.5507/bp.2006.001
Фадеев Н.Б. Перспективы применения растений рода лабазник (FILIPENDULA MILL.). В кн.: Генетические ресурсы лекарственных и ароматических растений. Сборник научных трудов. М., 2004. 328–331 [Fadeev NB. Prospects for the use of plants of the genus meadowsweet (FILIPENDULA MILL.). In the book: Genetic resources of medicinal and aromatic plants. M., 2004. 328–331 (In Russ.)].
Амосова Е.Н., Шилова И.В., Зуева Е.П., Рыбалкина О.Ю. Влияние экстракта Filipendula ulmaria (L.) Maxim. На развитие у мышей карциномы легких Льюис и эффективность цитостатической терапии // Химико-фармацевтический журнал. 2019;53(5):36–39. doi:10.30906/0023-1134-2019-53-5-36-39 [Amosova EN, Shilova IV, Zueva EP, Rybalkina OY. Influence of Filipendula ulmaria (L.) Maxim. Extract on lewis lung carcinoma development and cytostatic therapy effectiveness in mice // Pharmaceutical Chemistry Journal. 2019;53(5):458–461 (In Russ.)]. doi:10.30906/0023-1134-2019-53-5-36-39
Bespalov VG, Alexandrov VA, Vysochina GI et al. The inhibiting activity of meadowsweet extract on neurocarcinogenesis induced transplacentally in rats by ethylnitrosourea // J Neurooncol. 2017;131(3):459–467. doi:10.1007/s11060-016-2323-6
Bespalov VG, Alexandrov VA, Semenov AL et al. The inhibitory effect of Filipendulaulmaria (L.) Maxim. on colorectal carcinogenesis induced in rats by methylnitrosourea // J Ethnopharmacol. 2018;227:1–7. doi:10.1016/j.jep.2018.08.013
Bespalov VG, Alexandrov VA, Vysochina GI et al. In-hibitory Effect of Filipendulaulmaria on Mammary Carcinogenesis Induced by Local Administration of Methylnitrosourea to Target Organ in Rats // Anticancer Agents Med Chem. 2018;18(8):1177–1183. doi:10.2174/1871520618666180402125913
Bespalov VG, Alexandrov VA, Semenov AL et al. The inhibitory effect of meadowsweet (Filipendula ulmaria) on radiation-induced carcinogenesis in rats // Int J Radiat Biol. 2017;93(4):394–401. doi:10.1080/09553002.2016.1257834
Гаркави Л.Х., Жукова Г.В., Шихлярова А.И. и др. Противоопухолевое действие и другие регуляторные эффекты низкоинтенсивных факторов электромагнитной и химической природы в эксрименте // Биофизика. 2014;59(6):1161–1172. doi:10.1134/S0006350914060037 [Garkavi LH, Zhukova GV, Shikhliarova AI et al. Antitumor action and other regulatory effects of low-intensity electromagnetic and chemical factors in an experiment // Biophysics. 2014;59(6):944–953 (In Russ.)]. doi:10.1134/S0006350914060037
Гаркави Л.Х., Уколова М.А., Квакина Е.Б. Закономерность развития качественно отличающихся общих неспецифических адаптационных реакций организма / Диплом на открытие № 158 Комитета Совета Министров СССР по делам изобретений и открытий. Открытия в СССР. М., 1975;3:56–61 [Garkavi LKh, Ukolova MA, Kvakina EB. Pattern of development of qualitatively differing general unspecific adaptational reactions of the organism. Scientific Discovery Registration Certificate No.158 issued by the Committee on Inventions and Discoveries at the Council of Ministers of the USSR. Scientific discoveries in the USSR. 1975;3:56–61 (In Russ.)].
Гаркави Л.Х. Активационная терапия. Ростов-на-Дону: Изд-во Рост. ун-та, 2006 [Garkavi L.H. Activation Therapy. Rostov-on-Don: Rostov State Univ., 2006 (In Russ.)].
Kit OI, Shikhlyarova AI, Zhukova GV et al. Activation therapy: theoretical and applied aspects // Cardiometry. 2015;7:22–29. doi:10.12710/cardiometry.2015.7.2229
Жукова Г.В., Шихлярова А.И., Логинова Л.Н., Протасова Т.П. Эффекты комбинированного воздействия низкоинтенсивного электромагнитного излучения миллиметрового диапазона и комплексов незаменимых аминокислот у крыс-опухоленосителей старческого возраста // Южно-Российский онкологический журнал. 2020;1(4):38–46. doi:10.37748/2687-0533-2020-1-4-5 [Zhukova GV, Shikhlyarova AI, Loginova LN, Protasova TP. The effects of combined action of low-intensity electromagnetic radiation of the millimeter range and complexes of essential amino acids in tumor-bearing rats of old age // South Russian Journal of Cancer. 2020;1(4):38–46 (In Russ.)]. doi:10.37748/2687-0533-2020-1-4-5
Жукова Г.В., Шихлярова А.И., Бартенева Т.А. и др. Эффективное действие тималина на опухоль и состояние тимуса в эксперименте in vivo при использовании режима активационной терапии // Бюллетень экспериментальной биологии и медицины. 2018;165(1):94–98. doi:10.1007/s10517-018-4104-z [Zhukova GV, Schikhlyarova AI, Barteneva TA et al. Effect of thymalin on the tumor and thymus under conditions of activation therapy in vivo // Bulletin of experimental biology and medicine. 2018;165(1):80–83 (In Russ.)]. doi:10.1007/s10517-018-4104-z
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2022