Abstract
Background: study of the prognostic role of quantitative indicators for assessing the metabolic activity of the process in patients with newly diagnosed in patient with diffuse large B-cell lymphoma (DLBCL).
Patients and methods: metabolic bulk volume (MBV), defined as the metabolic volume of the largest lesion, was retrospectively investigated in 47 patients with DLBCL who underwent baseline pre-treatment 18FDG PET-CT at N.N. Alexandrov National Cancer Center of Belarus.
Results: semi-automatically segmented (41% SUVmax) total metabolic tumor volume (TMTV) and MBV underwent receiver operating characteristic analysis, identifying optimal thresholds of 600 cm3 for the TMTV and 275 cm3 for the MBV. According to Cox monovariate analysis, the International prognostic index (IPI) and MBV were predictors for progression-free survival (PFS) (HR 2,9 and 2,8, respectively). At multivariate analysis only IPI was independent predictors for PFS (HR 2,7). In subgroup with low IPI (0-2) higher MBV level was strongly associated with worse prognosis: a 3-year PFS rates in patients with MBV>275 cm3 and ≤ 275 cm3 were 53,8% and 89,5%, respectively (p=0,01).
Conclusion: the baseline MBV can be an efficient tool for the risk stratification of aggressive lymphoma.
References
Coiffier B, Lepage E, Briere J et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma // N Engl J Med. 2002;346(4):235–242. doi:10.1056/NEJMoa011795
Susanibar-Adaniya S, Barta SK. Update on diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management // Am J Hematol. 2021;96(5):617–629. doi:10.1002/ajh.26151
Crump M. Management of relapsed diffuse large B-cell lymphoma // Hematol Oncol Clin North Am. 2016;30(6):1195–1213. doi:10.1016/j.hoc.2016.07.004
Sehn LH, Donaldson J, Chhanabhai M et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia // JCO. 2005;23(22):5027–5033. doi:10.1200/JCO.2005.09.137
Bari A, Marcheselli L, Sacchi S et al. Prognostic models for diffuse large B-cell lymphoma in the rituximab era: a never-ending story // Ann Oncol. 2010;21(7):1486–1491. doi:10.1093/annonc/mdp531
Ruppert AS, Dixon JG, Salles G et al. International prognostic indices in diffuse large B-cell lymphoma: a comparison of IPI, R-IPI, and NCCN-IPI // Blood. 2020;135(23):2041–2048. doi:10.1182/blood.2019002729
Song JL, Wei XL, Zhang YK et al. The prognostic value of the international prognostic index, the national comprehensive cancer network IPI and the age-adjusted IPI in diffuse large B cell lymphoma // Zhonghua Xue Ye Xue Za Zhi. 2018;39(9):739–744. doi:10.3760/cma.j.issn.0253-2727.2018.09.007
Liu Y, Barta SK. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment // Am J Hematol. 2019;94(5):604–616. doi:10.1002/ajh.25460
Boltežar L, Prevodnik VK, Perme MP et al. Comparison of the algorithms classifying the ABC and GCB subtypes in diffuse large B-cell lymphoma // Oncol Lett. 2018;15(5):6903–6912. doi:10.3892/ol.2018.8243
Cho YA, Hyeon J, Lee H et al. MYC single-hit large B-cell lymphoma: clinicopathologic difference from MYC-negative large B-cell lymphoma and MYC double-hit/triple-hit lymphoma // Hum Pathol. 2021;113:9–19. doi:10.1016/j.humpath.2021.03.006
Milgrom SA, Dabaja BS, Mikhaeel NG. Advanced-stage Hodgkin lymphoma: have effective therapy and modern imaging changed the significance of bulky disease? // Leuk Lymphoma. 2021;62(7):1554–1562. doi:10.1080/10428194.2021.1881515
Cheson BD, Fisher RI, Barrington SF et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification // JCO. 2014;32(27):3059–3068. doi:10.1200/JCO.2013.54.8800
Tokola S, Kuitunen H, Turpeenniemi-Hujanen T, Kuittinen O. Significance of bulky mass and residual tumor-treated with or without consolidative radiotherapy to the risk of relapse in DLBCL patients // Cancer Med. 2020;9(6):1966–1977. doi:10.1002/cam4.2798
Barrington SF, Mikhaeel NG, Kostakoglu L et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group // JCO. 2014;32(27):3048–3058. doi:10.1200/JCO.2013.53.5229
Cheson BD, Ansell S, Schwartz L et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy // Blood. 2016;128(21):2489–2496. doi:10.1182/blood-2016-05-718528
Kostakoglu L, Chauvie S. Metabolic tumor volume metrics in lymphoma // Semin Nucl Med. 2018;48(1):50–66. doi:10.1053/j.semnuclmed.2017.09.005
Guo B, Tan X, Ke Q, Cen H. Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: a meta-analysis // PLoS One. 2019;14:e0210224. doi:10.1371/journal.pone.0210224
Shagera QA, Cheon GJ, Koh Y et al. Prognostic value of metabolic tumour volume on baseline 18F-FDG PET/CT in addition to NCCN-IPI in patients with diffuse large B-cell lymphoma: further stratification of the group with a high-risk NCCN-IPI // Eur J Nucl Med Mol Imaging. 2019;46(7):1417–1427. doi:10.1007/s00259-019-04309-4
Mikhaeel NG, Smith D, Dunn JT et al. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL // Eur J Nucl Med Mol Imag. 2016;43(7):1209–1219. doi:10.1007/s00259-016-3315-7
Каленик О.А., Жаврид Э.А, Сачивко Н.В. Возможности интерлейкина-2 в терапии В-клеточных неходжкинских лимфом // Инновационные технологии в медицине. 2016;4(1–2):29–39 [Kalenik VA, Zhavrid EA, Sachivko NV. Possibilities of interleukin-2 in the treatment of B-cell non-Hodgkin's lymphomas // Innovative technologies in medicine. 2016;4(1–2):29–39 (In Russ.)].
Kostakoglu L, Chauvie S. Metabolic tumor volume metrics in lymphoma // Semin Nucl Med. 2018;48(1):50–66. doi:10.1053/j.semnuclmed.2017.09.005
Li C, Tian Y, Shen Y et al. Utility of volumetric metabolic parameters on preoperative FDG PET/CT for predicting tumor lymphovascular invasion in non-small cell lung cancer // AJR Am J Roentgenol. 2021;217(6):1433–1443. doi:10.2214/AJR.21.25814
Rijo-Cedeño J, Mucientes J, Seijas Marcos S et al. Adding value to tumor staging in head and neck cancer: The role of metabolic parameters as prognostic factors // Head Neck. 2021;43(8):2477–2487. doi:10.1002/hed.26725
Song MK, Chung JS, Shin HJ et al. Clinical significance ofmetabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement // Ann Hematol. 2012;91:697–703. doi:10.1007/s00277-011-1357-2
Esfahani SA, Heidari P, Halpern EF et al. Baseline total lesion glycolysis measured with (18)FFD PET/CT as a predictor of progression-free survival in diffuse large B-cell lymphoma: a pilot study // Am J Nucl Med Mol Imaging. 2013;3:272–81.
Delaby G, Hubaut MA, Morschhauser F et al. Prognostic value of the metabolic bulk volume in patients with diffuse largeB-cell lymphoma on baseline (18)F-FDG PET-CT // Lymphoma. 2020;61(7):1584–1591. doi:10.1080/10428194.2020.1728750
Sasanelli M, Meignan M, Haioun C et al. Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma // Eur J Nucl Med Mol Imaging. 2014;41(11):2017–22. doi:10.1007/s00259-014-2822-7
Boellaard R. Standards for PET image acquisition and quantitative data analysis // J Nucl Med. 2009;50 Suppl 1:11S–20S. doi:10.2967/jnumed.108.057182
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2022