The evaluation of proliferative activity of tumor cells based on the technology of longterm phase-contrast microscopy technology CELL-IQ
PDF (Русский)

Keywords

phase-contrast microscopy
live-cell imaging
proliferative activity
tumor cells
modeling

How to Cite

, , , & . (2014). The evaluation of proliferative activity of tumor cells based on the technology of longterm phase-contrast microscopy technology CELL-IQ. Voprosy Onkologii, 60(5), 590–595. https://doi.org/10.37469/0507-3758-2014-60-5-590-595

Abstract

This work presents results of long-term phase-contrast microscopy research of proliferative potential of tumor cell lines utilizing live-cell imaging technology Cell-IQ (Chip-Man Technologies Ltd, Finland). It was found that the machine vision technology allowed to obtain sufficient body of evidence about high-quality and quantitative changes of proliferative activity of the tumor cells cultivated in static conditions. The present study demonstrates that modeling of time interval of maximum proliferative activity of tumors cells increases information efficacy and reliability of the analysis of dividing cell patterns using Cell-IQ technology. The models of exponential growth of various tumor cell lines, describing their quantitative and dynamic changes of expansion potential have been received. Modeling of maximum tumor cells proliferative activity can be applied for development of test-system of individual cell sensitivity to anticancer drugs in vitro.
https://doi.org/10.37469/0507-3758-2014-60-5-590-595
PDF (Русский)

References

Ершов Ю.А., Котин В.В. Кинетические модели роста на разных биологических уровнях развития // Журнал физической химии. - 2010. -T. 84. - № 10. - C. 1964-1979.

Медик В.А., Токмачев М.С., Фишман Б.Б. Статистика в медицине и биологии / Под ред. Ю.М. Комарова. - Теоретическая статистика. - Т. 1. - М., 2000. - 412 с.

Ризниченко Г.Ю. Лекции по математическим моделям в биологии // Изд-во РХД. - М-Ижевск, 2011 - 560 с.

Araujo R.P., McElwain D.L.S. A History of the Study of Solid Tumour Growth: The Contribution of Mathematical Modelling // Bull. Math. Biology. - 2004. - Vol. 66. - P. 1039-1091.

Baguley B.C., Hicks K.O., Wilson W.R. Tumor cell culture as in drug development // Anticancer drug development. - 2002, Academic Press. - P. 269-284.

Cree J.A. Cancer cell culture. Methods and protocols / second edition. - 2011, Humana press, N.-Y., London. - 458 p.

Daukste L., Basse B., Baguley B.C., Wall D.J. Mathematical determination of cell population doubling times for multiple cell lines // Bull. Math. Biol. - 2012. - Vol. 74 (10). - P. 2510-2534.

Ebert T., Bander N.H., Finstad C.L., Ramsawak R.D. et al. Establishment and characterization of human renal cancer and normal kidney cell lines // Cancer Res. - 1990. - Vol. 50. - № 1. - P. 5531-5536.

Freshney R.I. Culture of animal cells: A manual of basic technique. - N.-Y.- Chichester: Wiley & Sons, publ. - 2000. - 577 p.

Komarova N.L. Spatial stochastic models of cancer: fitness, migration, invasion // Math. Biosci Eng. - 2013. - Vol. 10 (3). - P761-775.

Lovitt C.J., Shelper T.B., Avery V.M. Advanced Cell Culture Techniques for Cancer Drug Discovery // Biology (Basel). - 2014. - Vol. 3 (2). - P. 345-367.

Rubin A., Riznichenko G. Mathematical Biophysics // Springer, 2014. - Vol. XV. - 273 р.

All the Copyright statements for authors are present in the standart Publishing Agreement (Public Offer) to Publish an Article in an Academic Periodical 'Problems in oncology' ...