Investigation of production of factors of angiogenesis by human solid tumor cells cultured for the preparation of antitumor vaccines
##article.numberofdownloads## 26
##article.numberofviews## 59
PDF (Русский)

Keywords

VEGF
PLGF
TGF
uPA
PAI-1
angiogenesis
solid tumors
cell cultures
endoglin
ANG-2
immunotherapy

How to Cite

, , & . (2014). Investigation of production of factors of angiogenesis by human solid tumor cells cultured for the preparation of antitumor vaccines. Voprosy Onkologii, 60(6), 728–735. https://doi.org/10.37469/0507-3758-2014-60-6-728-735

Abstract

Angiogenesis plays an important role in development of malignant tumors. Tumor progression is under the control of multiple signal produced by cancer cells and their microenvironment. In this study secretion of angiogenic growth factors by solid tumor cell lines has been evaluated by multiplex assay using Bio-Plex Pro Human Cancer Biomarker Panel 2, 18-plex (BioRad, США). Angiogenic factors spectrum included VEGF, endoglin, ANG-2, PLGF, TGF α, β, uPA and PAI-1. In vitro cell cultures from tumors of different origin (melanoma, breast cancer, sarcoma, kidney cancer) were all heterogeneous and greatly varied in angiogenic factors production. It was found that greatest expression related to VEGF-A (6183, 33±554,95 pg/ml for breast cancer cells), PLGF mainly has been detected in culture medium of sarcoma cells (1883,42±188,43 pg/ml) and melanoma cells (1557,15±354,70 pg/ml). Statistically significant negative correlation between VEGF-A and ANG-2 (r=-0,319, p=0,025) has been revealed. Means of TGFß concentration were: 4371,10±744,39 pg/ml for melanoma cells, 3166,67±465,57 pg/ml for breast cancer cells, 2678,11±365,81 pg/ml for sarcoma cells. It was shown that all studied cells produced endoglin (melanoma - min/max: 3/245,3 pg/ml; sarcoma - min/max: 65,5/290,5 pg/ml; breast cancer 65,8/208,5 pg/ml). uPA и PAI-1 expression characterized by negative correlation (r = -0,275 р=0,049). Thus, tumor cells can produce various factors that regulate processes of angiogenesis, cell migration, proliferation, invasion and metastasis thereby promote tumor progression. In development of new immunotherapeutic approaches to treatment of malignant neoplasm it is necessary to expand a complex of diagnostic criteria for better prognosis and improving clinical outcomes.
https://doi.org/10.37469/0507-3758-2014-60-6-728-735
##article.numberofdownloads## 26
##article.numberofviews## 59
PDF (Русский)

References

Медик В.А., Токмачев М.С., Фишман Б.Б. Статистика в медицине и биологии / Под ред. Ю.М. Комарова. - Теоретическая статистика. - Т. 1. - М., 2000. - 412 с.

Таипов М.А., Никифорова З.Н., Кудрявцев И.А. и соавт. Роль COX-2 в регуляции метастатического потенциала опухолевых клеток молочной железы человека // Опухоли женской репрод. системы. - 2014. - № 1. - С. 8-14.

Ahluwalia A., Jones M.K., Matysiak-Budnik T., Tarnawski A.S. VEGF and colon cancer growth beyond angiogenesis: does VEGF directly mediate colon cancer growth via a non-angiogenic mechanism? // Curr. Pharm. Des. - 2014. - Vol. 20 (7). - P. 1041-1044.

Annecke K., Schmitt M., Euler U. et al. uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial // Adv. Clin. Chem. - 2008. - Vol. 45. - P. 31-45.

Bennaceur K., Chapman J.A., Touraine J.-L., Portoukalian J. Immunosuppressive networks in the tumour environment and their effect in dendritic cells // Biochim.Biophys.Acta. - 2009. - Vol. 1795. - P. 16-24.

Bikvalvi A. Angiogen se tumorale // Bull. Cancer. - 2006. - hors serie. - P. 154-164.

Cao Y., Sonveaux P., Liu S. et al. Systemic overexpression of angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth // Cancer Res. - 2007. - Vol. 67. - P. 3835-3844.

Chen H.H., Weng B.Q., Cheng K.J. et al. Effect of the vascular endothelial growth factor expression level on an-giopoietin-2-mediated nasopharyngeal carcinoma growth // Vasc. Cell. - 2014. - Vol. 6 (1). - P. 4-16.

Dano K., Grrndahl J.H., Eriksen J., et al. The receptor for urokinase plasminogen activator: Stromal cell involvement in extracellular proteolysis during cancer invasion / In: Proteolysis and Protein Turnover A.J. Barrett & J. Bond (eds.). - Portland Press, London, 1993. - P. 239-245.

Dano K., Behrendt N., Hoyer-Hansen G. et al. Plasminogen activation and cancer // Thromb Haemost. - 2005. - Vol. 93 (4). - P. 676-681.

Duffy M.J. The Urokinase Plasminogen Activator System: Role in Malignancy // Current Pharmaceutical Design. - 2004. - Vol. 10. - P. 39-49.

Eisenreich A., Zakrzewicz A., Huber K. et al. Regulation of pro-angiogenic tissue factor expression in hypoxia-induced human lung cancer cells // Oncol. Rep. - 2013. - Vol. 30 (1). - P. 462-470.

Felcht M., Luck R., Schering A. et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling // J. Clin. Invest. - 2012. - Vol. 122 (6). - P. 1991-2005.

Fischer C., Jonckx B., Mazzone M. et al. Anti-PlGF inhibits growth of VEGF(R)- inhibitor-resistant tumors without affecting healthy vessels // Cell. - 2007. - Vol. 131. - P. 463-475.

Freshney R.I. Culture of animal cells: A manual of basic technique. - N.-Y-Chichester: Wiley&Sons, publ. - 2000. - 577 p.

Fujisawa T., Watanabe J., Kamata Y., et al. Effect of p53 gene transfection on vascular en-dothelial growth factor expression in endometrial cancer cells // Exp.Mol. Pathol. - 2003. - Vol. 74. - P. 276-281.

Hicklin D.J., Ellis L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis // J.Clin.Oncol. - 2005. - Vol. 23. - P. 1011-1027.

Kim K.J., Cho C.S., Kim W.U. Role of placenta growth factor in cancer and inflammation // Exp. Mol. Med. - 2012. - Vol. 44 (1). - P. 10-19.

Lacal P.M., Failla C.M., Pagani E., et al: Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor // J.Invest.Dermatol. - 2000. - Vol. 115. - P. 1000-1007.

Leenders W.P., Kusters B., de Waal R.M. Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis // Endothelium. - 2002. - Vol. 9. - P. 83-87.

Marcellini M., De Luca N., Riccioni T. et al. Increased melanoma growth and metastasis spreading in mice overexpressing placenta growth factor // Am. J. Pathol. - 2006. - Vol. 169. - P. 643-654.

Matsumoto K., Ema M. Roles of VEGF-A signaling in Development, Regeneration, and Tumors // J. Biochem. - 2014. - Vol.156(1). - P. 1-10.

Moens S., Goveia J., Stapor P.C. et al. The multifaceted activity of VEGF in angiogenesis - Implications for therapy responses // Cytokine Growth Factor Rev. - 2014. - Vol. 23. - pii: S1359-6101(14)00071-9.

Murakami M., Zheng Y., Hirashima M. et al. VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment // Arterioscler. Thromb. Vasc. Biol. - 2008. - Vol. 28. - P. 658-664.

Nassiri F., Cusimano M.D., Scheithauer B.W. et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy // Anticancer Res. - 2011. - Vol. 31 (6). - P. 2283-2290.

Oxmann D., Held-Feindt J., Stark A.M. et al. Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype // Oncogene. - 2008. - Vol. 27 (25). - P. 3567-3575.

Postiglione L., Di Domenico G., Caraglia M. et al. Differential expression and cytoplasm/membrane distribution of endoglin (CD105) in human tumour cell lines: implications in the modulation of cell proliferation // Int. J. Oncol. - 2005. - Vol. 26. - P. 1193-1201.

Prager G.W., Poettler M., Unseld M. et al. Angiogenesis in cancer: anti-VEGF escape mechanisms // Transl. Lung Cancer Res. - 2012. - Vol. 1 (1). - P. 14-25.

Reinmuth N., Parikh A.A., Ahmad S.A., et al. Biology of angiogenesis in tumors of the gas-trointestinal tract // Microsc.Res.Tech. - 2003. - Vol. 60. - P. 199-207.

Roy D.M., Walsh L.A. Candidate prognostic markers in breast cancer: focus on extracellular proteases and their inhibitors // Breast Cancer: Targets and Therapy. - 2014. - Vol. 6. - P. 81-91.

Segal S.S. Frontiers in microcirculation: control processes and clinical applications // Microcirculation. - 2010. - Vol. 17 (3). - P. 159-163.

Selvaraj S.K., Giri R.K., Perelman N. et al. Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor // Blood. - 2003. - Vol. 102. - P. 1515-1524.

Solinas G., Germano G., Mantovani A., Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation // J. Leukoc Biol. - 2009. - Vol. 86. - P. 1065-1073.

Su J.L., Yen C.J., Chen P.S. et al. The role of the VEGF-C/ VEGFR-3 axis in cancer pro-gression // Br. J. Cancer. - 2007. - Vol. 96 (4). - P. 541-545.

Takahashi A., Sasaki H., Kim S.J. et al. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis // Cancer Res. - 1994. - Vol. 54. - P. 4233-4237.

Taylor A.P., Goldenberg D.M. Role of placenta growth factor in malignancy and evidence that an antagonistic PlGF/ Flt-1 peptide inhibits the growth and metastasis of human breast cancer xenografts // Mol. Cancer Ther. - 2007. - Vol. 6. - P. 524-531.

Weaver A.M. Invadopodia: specialized cell structures for cancer invasion // Clin. Exp. Metastasis. - 2006. - Vol. 3. - P. 97-105.

Xu Y., Wang D., Zhao L.M. et al. Endoglin is necessary for angiogenesis in human ovarian carcinoma-derived primary endothelial cells // Cancer Biol. Ther. - 2013. - Vol. 14 (10). - P. 937-948.

All the Copyright statements for authors are present in the standart Publishing Agreement (Public Offer) to Publish an Article in an Academic Periodical 'Problems in oncology' ...