Radiosurgery and hypofractionated reirradiation in progression of hemispheric glioblastomas
##article.numberofdownloads## 137
##article.numberofviews## 141
pdf (Русский)

Keywords

progression
radiosurgery
glioblastoma
hypofractionation

How to Cite

Belyashova , A., Osinov , I., Kobyakov, G. L., Trunin , Y. Y., Zolotova , S. V., Antipina, N. A., Kosjuchenko , V. V., Golanov , A. V., Absalyamova , O. V., & Pavlova , G. V. (2023). Radiosurgery and hypofractionated reirradiation in progression of hemispheric glioblastomas. Voprosy Onkologii, 69(3), 452–461. https://doi.org/10.37469/0507-3758-2023-69-3-452-461

Abstract

Introduction. Glioblastomas (WHO grade IV) are the most common primary malignant tumors of the CNS with an extremely poor prognosis. Despite combined treatment, which includes maximal surgical removal followed by radiation and chemotherapy, the vast majority of cases experience progression within several months after surgery. Repeated radiation therapy is one of the most common and effective therapeutic options when progression is detected.

Aim. To study the efficacy and safety of stereotactic radiation therapy in treating glioblastoma progression in radiosurgery and hypofractionation modes.

Materials and methods. The study included 163 patients with glioblastoma (GB) progression after complex treatment from 2005 to 2021. All patients were treated in the radiotherapy department of the National Medical Research Center for Neurosurgery and the Moscow Gamma Knife Center. The age of patients included in the study ranged from 18 to 73.9 years. The median age was 49.5 years (95 % CI 47-52.3). In the mode of radiosurgery (for one fraction), 180 foci were treated (located "locally" within 3 cm from the prescribed isodose at primary irradiation — 122, and 58 — distant). In the hypofractionation mode, 107 foci were treated (local — 67 and distant — 40). The mean volumes of foci were 9.2 cm3 (0.01-43.2 cm3) in the radiosurgery mode and 17.84 cm3 (0.1-72 cm3) in the hypofractionation mode. The median prescribed dose in the radiosurgery mode was 20 Gy at 50 % of the isodose curve. The median cumulative focal dose in the hypofractionation mode was 30 Gy.

Results. Analysis of the treatment results in radiosurgery mode showed that for local progression, local control at 3, 6, and 12 months was 98.1 %, 76.3 %, and 38.5 %, respectively, while for distant progression it was 100 %, 80.1 %, and 67.2 %, respectively. In hypofractionation mode, the local control of foci of local progression at 3, 6, and 12 months was 90.2 %, 73.2 %, and 23.6 %, respectively, and for distant progression it was 97.6 %, 86.2 %, and 59.4 %, respectively.

Grade 3 radiation toxicity after radiosurgery was observed in 8.8 % of patients. Grade 3-4 radiation toxicity after hypofractionation in the form of edema was observed in 18.2 % of patients, and post-radiation necrosis was observed in 13.4 % of patients. In the hypofractionation mode, the mean volume of the focus in the group with post-radiation toxicity was 22.7 cm3, while in the group without post-radiation toxicity it was 15.2 cm3.

Conclusion: Stereotactic radiotherapy for glioblastoma progression in radiosurgery and hypofractionation modes is an effective and safe treatment option that leads to an increase in the duration of local tumor control. Repeating radiotherapy for distant glioblastoma progression significantly increases local control compared to local progression.

https://doi.org/10.37469/0507-3758-2023-69-3-452-461
##article.numberofdownloads## 137
##article.numberofviews## 141
pdf (Русский)

References

Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-Oncology. 2021;23(Supplement_3):iii1–105. doi:10.1093/neuonc/noab200.

Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021:252 [Malignant tumors in Russia in 2020 (morbidity and mortality). Ed. Kaprina, et al. M.: MNIOI named P.A. Herzen - branch of the Federal State Budgetary Institution "NMITs Radiology" of the Ministry of Health of Russia, 2021:252 (In Russ.)].

Carson KA, Grossman SA, Fisher JD, et al. Prognostic factors for survival in adult patients with recurrent glioma enrolled onto the new approaches to brain tumor therapy CNS consortium phase I and II clinical trials. Journal of Clinical Oncology. 2007;25(18):2601–6. doi:10.1200/jco.2006.08.1661.

Wesseling P, Capper D. WHO 2016 classification of gliomas. neuropathology and applied neurobiology. 2018;44(2):139–50. doi:10.1111/nan.12432.

Chang SM, Wen PY, Vogelbaum MA, et al. Response assessment in neuro-oncology (RANO): more than imaging criteria for malignant glioma. Neuro-Oncology Practice. 2015;2(4):205–9. doi:10.1093/nop/npv037.

Lee SW, Fraass BA, Marsh LH, et al. Patterns of failure following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a quantitative dosimetric study. Int J Radiat Oncol. 1999;43(1):79–88. doi:10.1016/s0360-3016(98)00266-1.

Zheng L, Zhou Z-R, Yu Q, et al. The definition and delineation of the target area of radiotherapy based on the recurrence pattern of glioblastoma after temozolomide chemoradiotherapy. Front Oncol. 2020;10. doi:10.3389/fonc.2020.615368.

Common Terminology Criteria for Adverse Events (CTCAE) v5.0 [Internet]. [November 27, 2017]. Available at: 28815663.https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf.

Shenouda G, Souhami L, Petrecca K, et al. A phase 2 trial of neoadjuvant temozolomide followed by hypofractionated accelerated radiation therapy with concurrent and adjuvant temozolomide for patients with glioblastoma. Int J Radiat Oncol. 2017;97(3):487–94. doi:10.1016/j.ijrobp.2016.11.006.

Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. New England Journal of Medicine. 2014;370(8):709–22. doi:10.1056/nejmoa1308345.

Liang H-KT, Mizumoto M, Ishikawa E, et al. Peritumoral edema status of glioblastoma identifies patients reaching long-term disease control with specific progression patterns after tumor resection and high-dose proton boost. Journal of Cancer Research and Clinical Oncology. 2021;147(12):3503–16. doi:10.1007/s00432-021-03765-6.

Kim MM, Speers C, Li P, et al. Dose-intensified chemoradiation is associated with altered patterns of failure and favorable survival in patients with newly diagnosed glioblastoma. J Neurooncol. 2019;143(2):313319. doi:10.1007/s11060-019-03166-3.

Kessel KA, Hesse J, Straube C, et al. Modification and optimization of an established prognostic score after re-irradiation of recurrent glioma. Camphausen K, editor. PLoS One. 2017;12(7):e0180457. doi:10.1371/journal.pone.0180457.

García-Cabezas S, Rivin del Campo E, Solivera-Vela J, et al. Re-irradiation for high-grade gliomas: Has anything changed? World J Clin Oncol. 2021;12(9):767–86. doi:10.5306/wjco.v12.i9.767.

Осинов И.К., Костюченко В.В., Кобяков Г.Л., Беляшова А.С. и др. Радиохирургическое лечение рецидивов глиобластом. Вопросы нейрохирургии имени Н.Н.Бурденко, 2021;85(6):76-82. [Osinov IK, Kostjuchenko VV, Kobyakov GL, et al. Radiosurgery for recurrent glioblastoma. Voprosy neirokhirurgii imeni NN Burdenko. 2021;85(6): 76-82. (In Russ.)]. doi:10.17116/neiro20218506176.

Hu Y, Chen D, Zhang L, et al. Efficacy and safety of hypofractionated stereotactic radiotherapy for recurrent malignant gliomas: a systematic review and meta-analysis. World Neurosurg. 2019;127:176–85. doi:10.1016/j.wneu.2019.03.297.

Straube C, Kessel KA, Zimmer C, et al. A second course of radiotherapy in patients with recurrent malignant gliomas: clinical data on re-irradiation, prognostic factors, and usefulness of digital biomarkers. Curr Treat Options Oncol. 2019;20(10). doi:10.1007/s11864-019-0673-y.

Cuneo KC, Vredenburgh JJ, Sampson JH, et al. Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol. 2012;82(5):2018–24. doi:10.1016/j.ijrobp.2010.12.074.

Clarke JL. Bevacizumab and other targeted agents in the upfront treatment of glioblastoma. Seminars in Radiation Oncology. 2014;24(4):273–8. doi:10.1016/j.semradonc.2014.06.002.

Kazmi F, Soon YY, Leong YH, et al. Re-irradiation for recurrent glioblastoma (GBM): a systematic review and meta-analysis. Journal of Neuro-Oncology. 2018;142(1):79–90. doi:10.1007/s11060-018-03064-0.

Scoccianti S, Francolini G, Carta GA, et al. Re-irradiation as salvage treatment in recurrent glioblastoma: A comprehensive literature review to provide practical answers to frequently asked questions. Crit Rev Oncol Hematol. 2018;126:8091. doi:10.1016/j.critrevonc.2018.03.024.

Suchorska B, Weller M, Tabatabai G, et al. Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma—results from the DIRECTOR trial. Neuro Oncol. 2016;18(4):549–56. doi:10.1093/neuonc/nov326.

Skeie BS, Enger PØ, Brøgger J, et al. Gamma knife surgery versus reoperation for recurrent glioblastoma multiforme. World Neurosurg. 2012;78(6):658–69. doi:10.1016/j.wneu.2012.03.024.

Pavlova G, Kolesnikova V, Samoylenkova N, et al. A Combined effect of g-quadruplex and neuro-inducers as an alternative approach to human glioblastoma therapy. Front. Oncol. 2022;12. doi:10.3389/fonc.2022.880740.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023