The influence of zinc sulfate on proliferation and apoptosis of thymocytes from tumor-bearing mice
##article.numberofdownloads## 53
##article.numberofviews## 114
pdf (Русский)

Keywords

thymic involution
thymocytes
zinc
hepatoma 22a
proliferation
apoptosis

How to Cite

Zelenskiy, E. A., Trulioff, T. A. S., Kudryavtsev , I. V., Sokolov, A. V., Kisseleva , E. P., & Rutto, K. V. (2023). The influence of zinc sulfate on proliferation and apoptosis of thymocytes from tumor-bearing mice. Voprosy Onkologii, 69(3), 437–443. https://doi.org/10.37469/0507-3758-2023-69-3-437-443

Abstract

Aim. The aim of this study was to investigate the influence of zinc supplementation on functional activity of thymocytes during the growth of transplantable tumor hepatoma 22a in mice.
Materials and methods. Inbred C3HA mice received zinc sulfate with drinking water during 3 weeks started from the first day after subcutaneous inoculation of syngeneic hepatoma 22a. On day 21 animals were killed, thymuses were extracted and evaluated for proliferation and apoptosis of thymocytes and zinc content in the thymus. Proliferation (cell cycle analysis) was performed by flow cytometry using cells DNA-binding stain DAPI. To examine apoptosis cells were exposed to DAPI and YO-PRO. Level of thymus zinc was evaluated using the method of atomic absorption spectrometry.
Results. At the 21 day of tumor growth apoptosis in thymocytes was increased by 2,5 times, while the percentage of cells in the S phase (DNA synthesis phase) decreased by 1,8 times. Apoptosis was mainly determined among double positive (DP, CD4+CD8+) cells – it was increased by 3,2 times compared to control. Zinc supplementation normalized thymocyte proliferation (proliferation index and number of cells in S phase) and decreased apoptosis. Additionally, zinc supplementation enlarged zinc content in the thymus.
Conclusion. Oral zinc supplementation causes inhibition of the development of thymic involution in mice bearing hepatoma 22a and essentially improves functional activity of thymocytes. Such animals show normal thymocyte proliferation and the number of apoptotic cells significantly lower compared to mice that did not receive zinc sulfate. The data obtained allow to consider oral zinc supplementation as perspective tool for the development of new strategies for thymus regeneration in cancer patients.

https://doi.org/10.37469/0507-3758-2023-69-3-437-443
##article.numberofdownloads## 53
##article.numberofviews## 114
pdf (Русский)

References

Mitchell WA, Lang PO, Aspinall R. Tracing thymic output in older individuals. Clin Exp Immunol. 2010;131:497–503. doi:10.1111/j.1365-2249.2010.04209.x.

Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and function throughout life. Immunity. 2018;48(2):202213. doi:10.1016/j.immuni.2018.01.007.

Liu YY, Yang QF, Yang JS, et al. Characteristics and prognostic significance of profiling the peripheral blood T-cell receptor repertoire in patients with advanced lung cancer. Int J Cancer. 2019;145(5):1423–1431. doi:10.1002/ijc.32145.

Guo L, Bi X, Li Y, et al. Characteristics, dynamic changes, and prognostic significance of TCR repertoire profiling in patients with renal cell carcinoma. J Pathol. 2020;251(1):26–37. doi:10.1002/path.5396.

Carrio R, Lopez DM. Insights into thymic involution in tumor-bearing mice. Immunol Res. 2013;57(13):106114. doi:10.1007/s12026-013-8446-3.

Cardinale A, De Luca CD, Locatelli F, et al. Thymic function and T-cell receptor repertoire diversity: implications for patient response to checkpoint blockade immunotherapy. Front Immunol. 2021;12:752042. doi:10.3389/fimmu.2021.752042.

Kinsella S, Dudakov JA. When the damage is done: injury and repair in thymus function. Front Immunol. 2020;11:1745. doi:10.3389/fimmu.2020.01745.

Velardi E, Tsai JJ, van den Brink MRM. T cell regeneration after immunological injury. Nat Rev Immunol. 2021;21:277291. doi:10.1038/s41577-020-00457-z.

Hakim FT. Age-dependent incidence, time course, and consequences of thymic renewal in adults. J Clin Invest. 2005;115:930939. doi:10.1172/JCI22492.

Зеленский Е.А., Рутто К.В., Соколов А.В., Киселева Е.П. Прием цинка тормозит развитие инволюции тимуса при опухолевом росте у мышей. Вопросы онкологии. 2021;67(3):436441 [Zelenskiy EA, Rutto KV, Sokolov AV, Kisseleva EP. Zinc supplementation prevents the development of thymic involution induced by tumor growth in mice. Problems in oncology. 2021;67(3):436–41 (In Russ.)]. doi:10.37469/0507-3758-2021-67-3-436-441.

Киселева Е.П., Суворов А.Н., Огурцов Р.П. Роль апоптоза в процессе инволюции тимуса при росте сингенной перевиваемой опухоли у мышей. Известия АН Серия Биологическая. 1998;(2):172179 [Kisseleva EP, Suvorov AN, Ogurtsov RP. The role of apoptosis in the thymic involution during growth of the syngeneic transplanted tumor in mice. Biology Bulletin. 1998;25(2):129135 (In Russ.)].

Киселева Е.П., Огурцов Р.П., Доценко Е.К. Влияние метаболических факторов на апоптоз тимоцитов при опухолевом росте. Бюллетень экспериментальной биологии и медицины. 2003;135(5):558561 [Kisseleva EP, Ogurtsov RP, Dotsenko EK. Effect of metabolic factors on apoptosis in thymocytes during tumor growth. Bulletin of Experimental Biology and Medicine. 2003;135(5):475477 (In Russ.)].

Зеленский Е.А., Рутто К.В., Кудрявцев И.В. и др. Содержание железа и пролиферация клеток в тимусе и селезенке мышей при росте гепатомы 22А. Цитология. 2021;63(2):116126 [Zelenskyi EA, Rutto KV, Kudryavtsev IV, et al. Iron content and cellular proliferation in thymus and spleen of hepatoma 22a bearing mice. cell and tissue biology. 2021;15(4):393–401 (Russ.)]. doi:10.1134/S1990519X21040118.

Darzynkiewicz Z, Huang X. Analysis of cellular DNA content by flow cytometry. Current Protocols in Immunology. 2004. Chapter 5: Unit 5.7. doi:10.1002/0471142735.im0507s60.

Mindukshev I, Kudryavtsev I, Serebriakova M, et al. Flow cytometry and light scattering technique in evaluation of nutraceuticals. Nutraceuticals. 2016:319–32. doi:10.1016/B978-0-12-802147-7.00024-3.

Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79–118. doi:10.1152/physrev.1993.73.1.79.

Haase H, Rink L. Zinc signals and immune function. BioFactors. 2014;40:27–40. doi:10.1002/biof.1114.

Wang C, Zhang R, Wei X et al. Metalloimmunology: the metal ion-controlled immunity. Adv Immunol. 2020;145:187241. doi:10.1016/bs.ai.2019.11.007.

Truong-Tran AQ, Carter J, Ruffin RE, et al. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14(3-4):315330. doi:10.1023/a:1012993017026.

King LE, Frentzel JW, Mann JJ, et al. Chronic zinc deficiency in mice disrupted T cell lymphopoiesis and erythropoiesis while B cell lymphopoiesis and myelopoiesis were maintaine. J Am College Nutr. 2005;24:494–502. doi:10.1080/07315724.2005.10719495.

Kido T, Suka M, Yanagisawa H. Effectiveness of interleukin-4 administration or zinc supplementation in improving zinc deficiency-associated thymic atrophy and fatty degeneration and in normalizing T cell maturation process. Immunology. 2022;165(4): 445459. doi:10.1111/imm.13452.

Mocchegiani E, Santarelli L, Muzzioli M, et al. Reversibility of the thymus involution and of age-related peripheral immune dysfunction by zinc supplementation in old mice. Int J Immunopharmacol. 1995;17(9):703718. doi:10.1016/0192-0561(95)00059-b.

Wong CP, Song Y, Elias VD, et al. Zinc supplementation increases zinc status and thymopoiesis in aged mice. J Nutr. 2009;139(7):13931397. doi:10.3945/jn.109.106021.

Saha AR, Hadden EM, Hadden JW. Zinc induces thymulin secretion from human thymic epithelial cells in vitro and augments splenocyte and thymocyte responses in vivo. Int J Immunopharmacol. 1995;17:729733. doi:10.1016/0192-0561(95)00061-6.

Mandal D, Bhattacharyya A, Lahiry L, et al. Failure in peripheral immuno-surveillance due to thymic atrophy: importance of thymocyte maturation and apoptosis in adult tumor-bearer. Life Sciences. 2005;77:27032716. doi:10.1016/j.lfs.2005.05.038.

Song Y, Yu R, Wang C, et al. Disruption of the thymic microenvironment is associated with thymic involution of transitional cell cancer. Urol Int. 2014; 92(1):104115. doi:10.1159/000353350.

Fukamachi Y, Karasaki Y, Sugiura T, et al. Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the Bcl-2/Bax ratio. Biochem Biophys Res Commun. 1998;246(2):346369. doi:10.1006/bbrc.1998.8621.

Iovino L, Mazziotta F, Carulli G, et al. High-dose zinc oral supplementation after stem cell transplantation causes an increase of TRECs and CD4+ naïve lymphocytes and prevents TTV reactivation. Leuk Res. 2018;70:2024. doi:10.1016/j.leukres.2018.04.016.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023