Efficacy of Radiodiagnostic and Neural Network Networks in Assessing Breast Cancer Response to Neoadjuvant Treatment of Aggressive Molecular Subtypes
##article.numberofdownloads## 46
##article.numberofviews## 112
pdf (Русский)

Keywords

breast cancer
pathologic complete response (pCR) of the tumor
radiological response (rCB)
molecular subtype
neural network

How to Cite

Shevchenko, S. A., Rozhkova, N. I., Dorofeev, A. V., Magdalyanova, M. I., & Petkau, V. V. (2024). Efficacy of Radiodiagnostic and Neural Network Networks in Assessing Breast Cancer Response to Neoadjuvant Treatment of Aggressive Molecular Subtypes. Voprosy Onkologii, 70(3), 506–515. https://doi.org/10.37469/0507-3758-2024-70-3-506-515

Abstract

Aim. To determine the most informative method of radiodiagnosis and the capabilities of a neural network in assessing the response to neoadjuvant treatment of the most aggressive molecular subtypes of breast cancer by comparing it with pathomorphological data.

Material and Methods. The material for the study was medical documentation data (medical histories and outpatient records) of 336 breast cancer patients who underwent examination and treatment at the State Autonomous Health Care Institution of the Sverdlovsk Region «Sverdlovsk Regional Oncology Centre», (Yekaterinburg) in 2021-2022; the average age of the patients was 57.6 (± 10.3) years. The trial enrolled patients with operable and locally advanced tumors (cT1N1, cT2N1, cT2-3N0-1) of various IHC subtypes who required neoadjuvant chemotherapy (NACT) to reduce tumor mass. Response to drug therapy was assessed using RECIST 1.1 criteria. (Response Evaluation Criteria in Solid Tumors). Histological specimens were examined before and after surgery to determine residual tumor or pathological complete response (pCR). All patients underwent mammography, ultrasound, MRI and NS imaging data were analyzed. A comparison of radiographic (rCR) and pathological (pCR) tumor response was presented.

Results. Breast tumor regression according to histological examination (pCR) was detected in 34.5 % (n = 116) of cases. A complete tumor response to NAC was achieved in 44.8 % of cases (n = 52) in the luminal B/HER2+ subtype, while in the non-luminal/HER2+ subtype only 37.9 % (n = 44) of women had a pCR. In triple-negative breast cancer, only 17.2 % (n = 20) of cases had no histological evidence of the tumor. Complete regression according to radiological research methods (rCR) was detected by mammography in 28.6 % (n = 96 people), by ultrasound in 29.8 % (n = 100 people), by MRI in 32.1 % (n = 108 people), the neural network detected complete tumor regression in 23.8 % of cases (n = 80). MRI demonstrated the highest sensitivity in detecting residual tumor (80.0-83.3 %), depending on the molecular subtype.

The neural network has proven to be comparable to mammography in terms of sensitivity of 69.2-72.0 %, depending on the biological characteristics of the tumour, and specificity of 60.0-62.2 %.

Conclusion. The high effectiveness of radiation methods in multimodal diagnostics in assessing and predicting tumor response to NAC has been proven. The trained neural network model has demonstrated the ability to detect residual tumor at the mammographic level.

https://doi.org/10.37469/0507-3758-2024-70-3-506-515
##article.numberofdownloads## 46
##article.numberofviews## 112
pdf (Русский)

References

Каприн А.Д., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению России в 2022 году (заболеваемость и смертность). Под ред. Каприна А.Д., Старинского В.В., Петровой Г.В. Москва: МНИОИ им. П.А. Герцена филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2023: 239. [Kaprin A.D., Starinskiy V.V., Petrova G.V. The state of cancer care in Russia in 2022 (mor- bidity and mortality). Ed. by Kaprin A.D., Starinskiy V.V., Petrova G.V. Moscow: P.A. Herzen Moscow State Research Institute - a branch of FSBI «National Medical Research Radiological Centre» of the Ministry of Health of Russia. 2023: 239. (in Rus)].

Рожкова Н.И., Боженко В.К., Бурдина И.И., et al. Радиогеномика рака молочной железы - новый вектор междисциплинарной интеграции лучевых и молекулярнобиологических технологий (обзор литературы). Медицинский алфавит. 2020; 21-29. [Rozhkova N.I., Bozhenko V.K., Burdina I.I., et al. Radiogenomics of breast cancer as new vector of interdisciplinary integration of radiation and molecular biological technologies (literature review). Medical Alphabet. 2020; 21-29/ (In Rus)].

Семиглазов В.Ф. Лечение рака молочной железы: клинико-биологическое обоснование. Под ред. В.Ф. Семиглазова. Москва: СИМК. 2017: 272.-ISBN: 978-5-91894-059-4. [Semiglazov V.F. Treatment of breast cancer: clinical and biological basis. Ed. by V.F. Semiglazov. Moscow: SIMK. 2017: 272.-ISBN: 978-5-91894-059-4. (In Rus)].

Семиглазов В.Ф., Криворотько П.В., Дашян Г.А., et al. Клинико-биологическая модель для оценки эффективности системной терапии рака молочной железы. Вопросы онкологии. 2018; 3: 289-297. [Semiglazov V.F., Krivorotko P.V., Dashyan G.A., et al. Clinical and biological model for evaluating the effectiveness of systemic treatment of breast cancer. Voprosy Onkologii = Problems in Oncology. 2018; 3: 289-297. (in Rus)].

von Minckwitz G., Untch M., Nüesch E., et al. Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat. 2011; 125(1): 145-56.-DOI: https://doi.org/10.1007/s10549-010-1228-x.

De Los Santos J.F., Cantor A., Amos K.D., et al. Magnetic resonance imaging as a predictor of pathologic response in patients treated with neoadjuvant systemic treatment for operable breast cancer. Translational Breast Cancer Research Consortium trial 017. Cancer. 2013; 119(10): 1776-83.-DOI: https://doi.org/10.1002/cncr.27995.

World Health Organization (1979) WHO handbook for reporting results of cancer treatment. Geneva. World Health Organization. 2012; 45. (18 June 2023) URL: https://apps.who.int/iris/handle/10665/37200.

Feinberg B.A., Zettler M.E., Klink A.J., et al. Comparison of solid tumor treatment response observed in clinical practice with response reported in clinical trials. JAMA Netw Open. 2021; 4(2): e2036741.-DOI: https://doi.org/10.1001/jamanetworkopen.

Fournier L., de Geus-Oei L.F., Regge D., et al. Twenty years on: RECIST as a biomarker of response in solid tumours an EORTC imaging group - ESOI joint paper. Front Oncol. 2022; 11: 800547.-DOI: https://doi.org/10.3389/fonc.2021.800547.

Houssami N., Macaskill P., von Minckwitz G., et al. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer. 2012; 48(18): 3342-54.-DOI: https://doi.org/10.1016/j.ejca.2012.05.023.

Ogston K.N., Miller I.D., Payne S., et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 2003; 12(5): 320-7.-DOI: https://doi.org/10.1016/s0960-9776(03)00106-1.

Cortazar P., Geyer C.E. Jr. Pathological complete response in neoadjuvant treatment of breast cancer. Ann Surg Oncol. 2015; 22(5): 1441-6.-DOI: https://doi.org/10.1245/s10434-015-4404-8.

Park J., Chae E.Y., Cha J.H., et al. Comparison of mammography, digital breast tomosynthesis, automated breast ultrasound, magnetic resonance imaging in evaluation of residual tumor after neoadjuvant chemotherapy. Eur J Radiol. 2018; 108: 261-268.-DOI: https://doi.org/10.1016/j.ejrad.2018.09.032.

Keune J.D., Jeffe D.B., Schootman M., et al. Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer. Am J Surg. 2010; 199(4): 477-84.-DOI: https://doi.org/10.1016/j.amjsurg.2009.03.012.

Schaefgen B., Mati M., Sinn H.P., et al. Can routine imaging aſter neoadjuvant chemotherapy in breast cancer predict pathologic complete response? Ann Surg Oncol. 2015.-DOI: https://doi.org/10.1245/s10434-015-4918-0.

Croshaw R., Shapiro-Wright H., Svensson E., et al. Accuracy of clinical examination, digital mammogram, ultrasound, and MRI in determining postneoadjuvant pathologic tumor response in operable breast cancer patients. Ann Surg Oncol. 2011; 18(11): 3160-3.-DOI: https://doi.org/10.1245/s10434-011-1919-5.

Adrada B.E., Huo L., Lane D.L., et al. Histopathologic correlation of residual mammographic microcalcifications after neoadjuvant chemotherapy for locally advanced breast cancer. Ann Surg Oncol. 2015; 22(4): 1111-7.-DOI: https://doi.org/10.1245/s10434-014-4113-8.

Fadul D., Rapelyea J., Schwartz A.M., Brem RF. Development of malignant breast microcalcifications after neoadjuvant chemotherapy in advanced breast cancer. Breast J. 2004; 10(2): 141-5.-DOI: https://doi.org/10.1111/j.1075-122x.2004.21365.x.

Pusztai L., Foldi J., Dhawan A., et al. Changing frameworks in treatment sequencing of triple-negative and HER2-positive, early-stage breast cancers. Lancet Oncol. 2019; 20(7): e390-e396.-DOI: https://doi.org/10.1016/S1470-2045(19)30158-5.

Chen J.H., Feig B., Agrawal G., et al. MRI evaluation of pathologically complete response and residual tumors in breast cancer after neoadjuvant chemotherapy. Cancer. 2008; 112(1): 17-26.-DOI: https://doi.org/10.1002/cncr.23130.

Morrow M., Waters J., Morris E. MRI for breast cancer screening, diagnosis, and treatment. Lancet. 2011; 378(9805): 1804-11.-DOI: https://doi.org/10.1016/S0140-6736(11)61350-0.

Hieken T.J., Boughey J.C., Jones K.N., et al. Imaging response and residual metastatic axillary lymph node disease after neoadjuvant chemotherapy for primary breast cancer. Ann Surg Oncol. 2013; 20(10): 3199-204.-DOI: https://doi.org/10.1245/s10434-013-3118-z.

Javid S., Segara D., Lotfi P., et al. Can breast MRI predict axillary lymph node metastasis in women undergoing neoadjuvant chemotherapy. Ann Surg Oncol. 2010; 17(7): 1841-6.-DOI: https://doi.org/10.1245/s10434-010-0934-2.

Lo Gullo R., Eskreis-Winkler S., Morris E.A., Pinker K. Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy. Breast. 2020; 49: 115-122.-DOI: https://doi.org/10.1016/j.breast.2019.11.009.

Tahmassebi A., Wengert G.J., Helbich T.H., et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients. Invest Radiol. 2019; 54(2): 110-117.-DOI: https://doi.org/10.1097/RLI.0000000000000518.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024