Adhesive Activity of Peripheral Venous Blood Leukocytes under in Vitro Conditions in Patients with Malignant Neoplasms
##article.numberofdownloads## 84
##article.numberofviews## 150
pdf (Русский)

Keywords

malignant neoplasms
leukocytes
mononuclear cells
adhesion
aggregation
clasmatosis
phagocytosis
cytotoxicity
extracellular and membrane receptors
shedding

How to Cite

Dobrodeeva, L., & Samodova , A. (2023). Adhesive Activity of Peripheral Venous Blood Leukocytes under in Vitro Conditions in Patients with Malignant Neoplasms. Voprosy Onkologii, 69(4), 665–675. https://doi.org/10.37469/0507-3758-2023-69-4-665-675

Abstract

Aim. To determine the influence of extracellular pool concentrations of cluster of differentiation and autoantibodies on adhesive properties of peripheral blood mononuclear cells in individuals with malignant neoplasms.

Materials and methods. The study presents the results of immunological examination of cancer patients (566) and practically healthy individuals (103). Concentrations of IL-1β, TNF-α, IL-6, IL-10, IFN-γ, IgA, IgM, IgG, IgE, autoantibodies to phospholipids, phosphatidic acid, double-stranded DNA and rheumatoid factor were determined in blood serum. Additionally, lymphocyte phenotypes (CD3+, CD16+, CD23+, CD25+, CD54+, CD71+) and concentrations of sCD71, sCD25, sCD23, and sCD54 were studied.

In vitro study of the adhesive properties of mononuclear cells in peripheral venous blood leukocyte suspensions of 67 cancer patients and 23 practically healthy subjects aged 21-56 years was carried out along with parallel immunological examination.

Results. Immune reactions to malignant neoplasms are characterized by low activity of phagocytes and cytotoxic effector cells, accompanied by the active production of antibodies that involve IgE and a wide range of autoantibodies. The low level of activity of phagocyte and cytotoxic peripheral blood mononuclear cells of patients is associated with the suppression of their adhesion to glass under in vitro conditions. Reduced adhesive activity to glass of leukocytes in peripheral blood of patients is associated with suppression of their spreading ability, exophagy, and nuclear activity.

Weak adhesion to glass of mononuclear cells in peripheral venous blood of patients is associated with increased concentrations of adhesion molecules (sCD54), transferrin receptors (sCD71), interleukin-2 (sCD25) and FcII (sCD23) in the blood serum, which are shed by the cell when their concentration on the membrane is excessive. Cell aggregates and clasmatosis, considered as signs of ineffective cytotoxicity, were more frequently registered among adhered mononuclear cells in patients.

Conclusion. Immune reactions to malignant neoplasms are characterized not only by a high level of humoral response involving IgE and a significant spectrum of autoantibodies but also by low efficiency of cytotoxic effector cells and phagocytes. The low level of activity of phagocytes and cytotoxic peripheral blood mononuclear cells of patients is associated with the suppression of their adhesion to the glass under in vitro conditions. The decrease in adhesive properties of mononuclears is due to the shedding of receptor structures from the membrane when the cell cytosol is overloaded with external signals. The loss of adhesive abilities of mononuclears is accompanied by an increase in the frequency of aggregate formation and clasmatosis.

https://doi.org/10.37469/0507-3758-2023-69-4-665-675
##article.numberofdownloads## 84
##article.numberofviews## 150
pdf (Русский)

References

Weinberg RA. The Biology of Cancer. Garland Science. 2006;497. doi:10.1201/9780429258794.

Мальцева В.Н., Фахфчева Н.В., Сафронова В.Г. Мононуклеарные лейкоциты мышей с удаленной опухолью индуцируют резистентность к трансплантации опухолевых клеток животных. Бюллетень экспериментальной биологии и медицины. 2009;148(7):100-102 [Maltseva VN, Fahfcheva NV, Safronova VG. Mononuclear leukocytes of mice with a removed tumor induce resistance to transplantation of tumor cells of animals. Bulletin of Experimental Biology and Medicine. 2009;148(7):100-102 (In Russ.)].

Абакумова Т.В., Генинг Т.П., Антонеева И.И., и др. Нейтрофилокины и морфофункциональное состояние циркулирующих нейтрофилов при опухолях яичника. Российский иммунологический журнал. 2021;2(3):355-362 [Abakumova TV, Gening TP, Gening SO, et al. Angiogenic potential of circulating blood neutrophils in endometrial cancer. Russian Journal of Immunology. 2021;23(2):339-44 (In Russ.)]. doi:10.15789/1563-0625-APO-2163.

Kurilin VV, Kulirov EV, Sokolov AV, et al. Effect of antigen-primed dendritic cell –based immunotherapy on antitumor cellular immune response in patients with colorectal cancer. Russian Journal of Immunology. 2021;23(4):963-968. doi:10.15789/1563-0625-EOA-2251.

Rao D, Verburg F, Renner K, et al. Metabolic profiles of regulatory T cells in the tumour microenvironment. Cancer Immunol Immunother. 2021;70(9):2417-2427. doi:10.1007/s00262-021-02881-z.

Berbers RM, van der Wal MM, van Montfrans JM, et al. Chronically activated T-cells retain their inflammatory properties in common variable immunodeficiency. J Clin Immunol. 2021;41(7):1621-1632. doi:10.1007/s10875-021-01084-6.

Шевченко Ю.А., Кузнецова М.С., Хантакова Ю.Н., и др. Особенности количественной экспрессии рецепторов Checkpoint-молекул PD-1 и Т1М-3 HA CD4+ И CD8+ Т-клетках при раке молочной железы разной степени прогрессии. Медицинская иммунология. 2021;4:865-870 [Shevchenko YuA, Kuznetsova MS, Khantakova YuN, et al. Quantitative expression features of PD-1 and TIM-3 Checkpoint molecule receptors on CD4⁺ and CD8⁺ T-cells in breast cancer of varying progression degrees. Russian Journal of Immunology. 2021;23(4):865–70 (In Russ.)]. doi:10.15789/1563-0625-qef-2239.

Hazim A, Majithia N, Murphy SJ, et al. Heterogeneity of PD-L1 expression between invasive and lepidic components of lung adenocarcinomas. Cancer Immunol Immunother. 2021;70(9):2651-2656. doi:10.1007/s00262-021-02883-x.

Do KT, Manuszak C, Thrash E, et al. Immune modulating activity of the CHK1 inhibitor prexasertib and anti-PD-L1 antibody LY3300054 in patients with high-grade serous ovarian cancer and other solid tumors. Cancer Immunol Immunother. 2021;70(10):2991-3000. doi:10.1007/s00262-021-02910-x.

Berry S, Giraldo NA, Green BF, et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science. 2021;372(6547):eaba2609. doi:10.1126/science.aba2609.

Wang G, Tajima M, Honjo T, et al. STAT5 interferes with PD-1 transcriptional activation and affects CD8+ T-cell sensitivity to PD-1-dependent immunoregulation. Int Immunol. 2021;33(11):563-572. doi:10.1093/intimm/dxab059.

Zhao C, Hu X, Xue Q, et al. Reduced counts of various subsets of peripheral blood t lymphocytes in patients with severe course of COVID-19. Bull Exp Biol Med. 2022;172(6):721-724. doi:10.1007/s10517-022-05464-9.

Meltzer MS, Macrophage activation for tumor cytotoxicity: characterization of priming and trigger signals during lymphokine activation. J Immunol. 1981;127(1):179–183. doi:10.4049/jimmunol.127.1.179.

Jandl JH, Tomlinson AS. The destruction of red cells by antibodies in man. II. Pyrogenic, leukocytic and dermal responses to immune hemolysis. J Clin Invest. 1958;37(8):1202-28. doi:10.1172/JCI103710.

Lokshina LA. Plasma membrane proteinases from lymphoid cells and their biological functions. Bioorg Chem. 1998;24(5):323-31.

Avrameas S, Leduc EH. Detection of simultaneous antibody synthesis in plasma cells and specialized lymphocytes in rabbit lymph nodes. J Exp Med. 1970;131(6):1137-68. doi:10.1084/jem.131.6.1137.

Thorne EG, Kölsch I, Schwartzmann N, et al. In vivo effects of lymphokines: An ultrastructural study. Clin Res. 1975;23:455a.

Zölzer F, Hon Z, Skalická ZF, et al. Micronuclei in lymphocytes from radon spa personnel in the Czech Republic. Int Arch Occup Environ Health. 2013;86(6):629-33. doi:10.1007/s00420-012-0795-z.

Smolen JE, Shohet SB. Remodeling of granulocyte membrane fatty acids during phagocytosis. J Clin Invest. 1974;53(3):726-34. doi:10.1172/JCI107611.

Leo J. Информационное многообразие как новый механизм перекрестной реактивности аутоантител. Иммунофизиология. Естественный аутоиммунитет в норме и патологии. М. 2008:66-72 [Leo J. Information diversity as a new mechanism of autoantibody cross-reactivity. Immunophysiology. Natural autoimmunity in norm and pathology. М. 2008:66-72 (In Russ.)].

Mareeva T, Martinez-Hackert E, Sykulev Y. How a T cell receptor-like antibody recognizes major histocompatibility complex-bound peptide. J Biol Chem. 2008;283(43):29053-9. doi:10.1074/jbc.M804996200.

Greaves MF, Hariri G, Newman RA, et al. Selective expression of the common acute lymphoblastic leukemia (gp 100) antigen on immature lymphoid cells and their malignant counterparts. Blood. 1983;61(4):628-39. doi:10.1182/blood.v61.4.628.628.

Steenblock ER, Fadel T, Labowsky M, et al. An artificial antigen-presenting cell with paracrine delivery of IL-2 impacts the magnitude and direction of the T cell response. J Biol Chem. 2011;286(40):34883-92. doi:10.1074/jbc.M111.276329.

Bøgh KL, Nielsen H, Eiwegger T, et al. IgE versus IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy. Mol Immunol. 2014;58(2):169-76. doi:10.1016/j.molimm.2013.11.014.

Maurer D, Ebner C, Reininger B, et al. The high affinity IgE receptor (Fc epsilon RI) mediates IgE-dependent allergen presentation. J Immunol. 1995;154(12):6285-90. doi:10.4049/jimmunol.154.12.6285.

Добродеева Л.К., Патракеева В.П., Стрекаловская М.Ю. Иммунные реакции в зависимости от стадии онкологического заболевания. Якутский медицинский журнал. 2022;78(2):60-63 [Dobrodeeva LK, Patrakeeva VP, Strekalovskaya MYu. Dependence of immune reactions on the stage of oncological disease. Yakut Medical Journal. 2022;78(2):60-63 (In Russ.)]. doi:10.25789/YMJ.2022.78.16.

Samodova AV, Dobrodeeva LK. Role of shedding in the activity of immunocompetent cells with reagin protection mechanism. Human Physiology. 2012;38(4):114-20.

Melis M, Pace E, Siena L, et al. Biologically active intercellular adhesion molecule-1 is shed as dimers by a regulated mechanism in the inflamed pleural space. Am J Respir Crit Care Med. 2003;167(8):1131-8. doi:10.1164/rccm.200207-654OC.

Salvin SB, Sell S, Nishio J. Activity in vitro of lymphocytes and macrophages in delayed hypersensitivity. J Immunol. 1971;107(3):655-62. doi:10.4049/jimmunol.107.3.655.

Перфильева Ю.В., Аббаллов А., Кустова Е.А., Урозалиева Н.Т. Экспрессия маркеров адгезии CD621, CD44, CXCR4 на NK клетках. Цитокины и воспаление. 2012;11(1):86-90 [Perfileva YuV, Abballov AE, Kustova EA, Urozalieva NT. Expression of adhesion markers CD621, CD44, CXCR4 on NK cells. Cytokines and Inflammation. 2012;11(1):86-90 (In Russ.)].

Izumida Y, Seiyama A, Maeda N. Erythrocyte aggregation: Bridging by macromolecules and electrostatic repulsion by sialic acid. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1991;1067(2):221–6. doi:10.1016/0005-2736(91)90047-c.

Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633-40. doi:10.1016/s1471-4906(01)02060-9.

Craddock PR, Fehr J, Dalmasso AP, et al. Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J Clin Invest. 1977;59(5):879-88. doi:10.1172/JCI108710.

Weng X, Cloutier G, Beaulieu R, et al. Influence of acute-phase proteins on erythrocyte aggregation. Am J Physiol. 1996;271(6Pt2):H2346-52. doi:10.1152/ajpheart.1996.271.6.H2346.

Remijsen Q, Vanden Berghe T, Wirawan E, et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;21(2):290-304. doi:10.1038/cr.2010.150.

Gardiner CM. Killer cell immunoglobulin-like receptors on NK cells: the how, where and why. Int J Immunogenet. 2008;35(1):1-8. doi:10.1111/j.1744-313X.2007.00739.x.

Anderson KJ, Allen RL. Regulation of T-cell immunity by leucocyte immunoglobulin-like receptors: innate immune receptors for self on antigen-presenting cells. Immunology. 2009;127(1):8-17. doi:10.1111/j.1365-2567.2009.03097.x.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023