Impact of Cancer Stem Cell Markers Expression in Patients with Glioblastoma on Treatment Outcomes
pdf (Русский)

Keywords

cancer stem cells
glioblastoma
markers
treatment outcomes

How to Cite

Gulyaev, D. A., Chizhova, K. A., Sulin, K. A., Kurnosov, I. A., Mitrofanova, L. B., Samochernykh, N. K., & Chirkin, V. Y. (2024). Impact of Cancer Stem Cell Markers Expression in Patients with Glioblastoma on Treatment Outcomes. Voprosy Onkologii, 70(4), 755–764. https://doi.org/10.37469/0507-3758-2024-70-4-755-764

Abstract

Introduction. Glioblastoma is the most malignant primary brain tumor. Progression and relapse of this neoplasm remain inevitable. Cancer stem cells (CSCs) are thought to contribute to treatment resistance in glioblastoma. Currently, there is no ideal set of markers to accurately characterize CSCs to predict the course of the disease or response to treatment.

Aim. To study the long-term results of treatment of patients with glioblastomas based on the analysis of the presence and degree of expression of CSC markers.

Materials and methods. Total microsurgical tumor removal was performed in 16 patients with verified Grade 4 glioblastoma (IDH-wildtype). Follow-up observation was carried out from March 2019 to October 2023. The average overall survival (OS) was 17.0 ± 10.7 months (Q1-11.3, Q3-22.8), minimum — 4.1 months, maximum — 36.8 months. A correlation analysis of the relationship between OS and glioblastoma cancer stem cell markers such as Nanog, Nestin, CD133, SOX2, FOXM1 and CD38 %, was performed. Statistical analysis was carried out using StatTech v. 3.1.10 (developer — StatTech LLC, Russia).

Results. According to the results of correlation analysis, there was no association association between Nanog expression and OS. A weak inverse relationship was found between nestin, CD133 %, CD38 % and OS. A weak direct relationship was established between SOX2 and OS. A moderately strong direct relationship was established between FOXM1 and OS. We assessed the dependence of OS on a set of CSC markers using the multiple linear regression method. The resulting regression model is characterized by a correlation coefficient rxy = 0.534, which corresponds to an average regression coefficient on the Chaddock scale. The model was not statistically significant (p = 0.725). Thus, the cancer stem cell markers we studied are not predictors for the OS prediction model; statistically significant relationships were not found.

Conclusion. The study of glioblastoma markers in CSCs to predict treatment outcome is currently impractical and has no impact on treatment. Today, the main proven approach to treating patients with glioblastoma is local tumor control.

https://doi.org/10.37469/0507-3758-2024-70-4-755-764
pdf (Русский)

References

Biserova K., Jakovlevs A., Uljanovs R., et al. Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma. Cells. 2021; 10(3): 621.-DOI: https://doi.org/10.3390/cells10030621.

Bien-Möller S., Balz E., Herzog S., et al. Association of glioblastoma multiforme stem cell characteristics, differentiation, and microglia marker genes with patient survival. Stem Cells Int. 2018.-DOI: https://doi.org/10.1155/2018/9628289.

Wallenborn M., Xu L.X., Kirsten H., et al. Molecular analyses of glioblastoma stem-like cells and glioblastoma tissue. PLoS ONE. 2020; 15(7): e0234986.-DOI: https://doi.org/10.1371/journal.pone.0234986.

Ignatova T., Kukelov V., Laymell E., et al. Human Cortical Glial Tumors Contain Neural Stem-like Cells Expressing Astroglial and Neuronal Markers in vitro. Glia. 2002; 39(3): 193-206.-DOI: https://doi.org/10.1002/glia.10094.

Прокудин М.Ю., Мартынов Б.В., Свистов Д.В., et al. Генетические биологические маркеры глиальных опухолей головного мозга: мутации в генах изоцитратдегидрогеназ 1 и 2. Сибирский онкологический журнал. 2020; 19(4): 59-66.-DOI: https://doi.org/10.21294/1814-4861-2020-19-4-59-66. [Prokudin M.Yu., Martynov B.V., Svistov D.V., et al. Genetic biomarkers of glial brain tumors: IDH1 and IDH2 mutations. Siberian Journal of Oncology. 2020; 19(4): 59-66.-DOI: https://doi.org/10.21294/1814-4861-2020-19-4-59-66. (In Rus)].

Almenglo C., Caamano P., Fraga M., et al. From neural stem cells to glioblastoma: a natural history of GBM recapitulated in vitro. J Cell Physiol. 2021; 236(11): 7390-7404.-DOI: https://doi.org/10.1002/jcp.30409.

Сулин КА, Гальковский БЭ, Петров АА, et al. Иммуногистохимическое выявление маркеров стволовых клеток, факторов транскрипции и PD-L1 в злокачественных глиомах взрослых пациентов. Гены и клетки. 2021; 16(4): 6-14. [Sulin KA, Galkovsky BE, Petrov AA, et al. Immunohistochemical detection of stem cell markers, transcription factors and PD-L1 in malignant gliomas in adult patients. Genes & Cells. 2021; 16(4): 6-14. (In Rus)].

Brown D.V., Filiz G., Daniel P.M., et al. Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PLoS ONE. 2017; 12(2).-DOI: https://doi.org/10.1371/journal.pone.0172791.

Liang C., Zhao T., Ge H., et al. The clinicopathological and prognostic value of nanog in human gastrointestinal luminal cancer: a meta-analysis. Int J Surg Lond Engl. 2018; 53: 193-200.-DOI: https://doi.org/10.1016/j.ijsu.2018.03.050.

Гальковский Б.Э., Митрофанова Л.Б., Лахина Ю.С., et al. Иммуногистохимическое исследование белков Prox1, CD133 и CD38 в глиобластомах вентрикулярно-субвентрикулярной зоны и их влияние на продолжительность жизни пациентов. Ученые записки СПбГМУ им. акад. И.П. Павлова. 2020; 27(1): 75-85.-DOI: https://doi.org/10.24884/1607-4181-2020-27-1-75-85. [Galkovsky BE, Mitrophanova LB, Lakhina IS, et al. Immunohistochemical study of proteins Prox1, CD133 and CD38 in glioblastomas of the ventricular-subventricular zone and their effect on the life expectancy of patients. The Scientific Notes of Pavlov University. 2020; 27(1): 75-85.-DOI: https://doi.org/10.24884/1607-4181-2020-27-1-75-85. (In Rus)].

Runtu F., Ichwan S., Wanandi S.I., et al. Evaluating the potential of NANOG as a glioma malignancy biomarker. J Phys Conf Ser. 2018; 1073: 032057.-DOI: https://doi.org/10.1088/1742-6596/1073/3/032057.

Fawzy M.S., Badran D.I., Al Ageeli E., et al. Longevity-related gene transcriptomic signature in glioblastoma multiforme. Oxid Med Cell Longev. 2018; 2018: 1-12.-DOI: https://doi.org/10.1155/2018/8753063.

Krol I., Castro-Giner F., Maurer M., et al. Detection of circulating tumour cell clusters in human glioblastoma. Br J Cancer. 2018; 119(4): 487-491.-DOI: https://doi.org/10.1038/s41416-018-0186-7.

Alameda F., Velarde J.M., Carrato C., et al. Prognostic value of stem cell markers in glioblastoma. Biomarkers. 2019; 24(7): 677-683.-DOI: https://doi.org/10.1080/1354750X.2019.1652345.

Sher G., Masoodi T., Patil K., et al. Dysregulated FOXM1 signaling in the regulation of cancer stem cells. Semin Cancer Biol. 2022; 86(3): 107-121.-DOI: https://doi.org/10.1016/j.semcancer.2022.07.009.

Wang Q., Wu H., Hu J., et al. Nestin is required for spindle assembly and cell cycle progression in glioblastoma cells. Mol Cancer Res MCR. 2021; 19(10): 1651-1665.-DOI: https://doi.org/10.1158/1541-7786.MCR-20-0994.

Donglai L., Lin L., Zongtao H., et al. Nestin expression is associated with poor clinicopathological features and prognosis in glioma patients: an association study and meta-analysis. Mol Neurobiol. 2017; 54(1): 727-735.-DOI: https://doi.org/10.1007/s12035-016-9689-5.

Aulakh S., Manna A., Schiapparelli P., et al. EXTH-06. CD38-targeted therapy in glioblastoma. Neuro-Oncol. 2018; 20(6): vi86.-DOI: https://doi.org/10.1093/neuonc/noy148.355.

Мерабишвили В.М., Кеннет К., Вальков М.Ю., et al. Эпидемиология и выживаемость больных злокачественными новообразованиями головного мозга (С71). Популяционное исследование. Вопросы онкологии. 2020; 66(5): 489-499.-DOI: https://doi.org/10.37469/0507-3758-2020-66-5-489-499. [Merabishvili V.M., Kenneth K., Valkov M.Y., Dyachenko A.A. Epidemiology and survival of patients with malignant tumors of the brain (C71). Population-based study. Voprosy Onkologii = Problems in Oncology. 2020; 66(5): 489-499.-DOI: https://doi.org/10.37469/0507-3758-2020-66-5-489-499. (In Rus)].

Mauffrey P., Tchitchek N., Barroca V., et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature. 2019; 569(7758): 672-678.-DOI: https://doi.org/10.1038/s41586-019-1219-y.

Azzarelli R., Simons B.D., Philpott A. The developmental origin of brain tumours: A cellular and molecular framework. Dev Camb Engl. 2018; 145(10). dev162693.-DOI: https://doi.org/10.1242/dev.162693.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024