Efficiency of the Combined Photodynamic Therapy with Cisplatin in the Treatment of B16 Melanoma in C57BL/6 Mice
pdf (Русский)

Keywords

oncology
melanoma
mice
photodynamic therapy
cisplatin

How to Cite

Kruglov, S. S., Panchenko, A. V., Nekhaeva, T. L., Tyndyk, M. L., & Fedoros, E. I. (2023). Efficiency of the Combined Photodynamic Therapy with Cisplatin in the Treatment of B16 Melanoma in C57BL/6 Mice. Voprosy Onkologii, 69(5), 850–854. https://doi.org/10.37469/0507-3758-2023-69-5-850-854

Abstract

Introduction. Photodynamic therapy is one of the modern methods for treating tumor and pre-tumor diseases. This method has several limitations, which may be overcome by combining it with chemotherapeutic antitumor agents.

Aim. To investigate the potential of combining photodynamic therapy with cisplatin in a B16 melanoma model in C57BL/6 mice.

Materials and methods. We evaluated the possibility of combining photodynamic antitumor treatment using the chlorine photosensitizer Radachlorin® and cisplatin in a B16 melanoma model in C57BL/6 mice. Photoactivation was performed using 662 nm laser irradiation at a dose of 300 J/cm2.

Results. Tumor growth inhibition compared to the control group was maximal at 7 days and amounted to 42 % in the photodynamic therapy group (p < 0.01), 60 % in the cisplatin group administered 30 minutes before photodynamic therapy (p < 0.001), 57 % in the cisplatin group administered 24 hours after photodynamic therapy (p < 0.001), and 31 % (p < 0.05) in the cisplatin-only group. The mean survival time of animals until the tumor reached a volume of 4 cm3 was 9.8 ± 0.6 days in the control group, 9.3 ± 1.7 days in the photodynamic therapy group (p = 0.9829), 8.9 ± 0.8 days in the cisplatin group (p = 0.3247), 10.3 ± 2.8 days when cisplatin was administered 30 minutes before photodynamic therapy (p = 0.1309), and 12.7 ± 2.1 days when cisplatin was administered 24 hours after photodynamic therapy (p = 0.0214).

Conclusion. The combined use of Radachlorin® photodynamic therapy with cisplatin in the B16 melanoma model resulted in an additive anti-tumor effect and an increase in survival.

https://doi.org/10.37469/0507-3758-2023-69-5-850-854
pdf (Русский)

References

Дунаевская ВВ, Церковский ДА, Татарчук ТФ, Гончарук ИВ. Фотодинамическая терапия в клинической онкологии (аналитический обзор и собственный опыт). Клінічна онкологія. 2020;39(3):1-8 [Dunaevskaya VV, Tzerkovsky DA, Tatarchuk TF, Goncharuk IV. Photodynamic therapy in clinical oncology. Clinical Oncology. 2020;39(3):1-8 (In Russ.)]. https://doi.org/10.32471/clinicaloncology.2663-466X.39-3.27393.

Кирсанова ОВ. Обзор эффективности применения фотодинамической терапии для лечения взрослых пациентов с онкологическими заболеваниями кожи // Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2019;12(1):42-7 [Kirsanova OV. Efficacy of photodynamic therapy in treatment of adult patients with skin cancer. Farmakoekonomika Modern Pharmacoeconomic and Pharmacoepidemiology. 2019;12(1):42-7 (In Russ.)]. https://doi.org/10.17749/2070-4909.2019.12.1.42-47.

Балдуева ИА, Новик АВ, Нехаева ТЛ, и др. Перспективы активной специфической иммунотерапии аутологичными незрелыми костномозговыми дендритными клетками с фотодинамической терапией и циклофосфамидом у больных диссеминированной меланомой, резистентных к стандартным методам лечения. Вопросы онкологии. 2017;63(2):336-45 [Baldueva IA, Novik AV, Nekhaeva TL, et al. Perspectives in active specific immunotherapy with autologous immature dendritic cells combined with photodynamic therapy and cyclophosphamide in patients with disseminated melanoma resistant to standard therapy. Voprosy Onkologii. 2017;63(2):336-45 (In Russ.)].

Гельфонд МЛ, Барчук АС, Васильев ДВ, Стуков АН. Возможности фотодинамической терапии в онкологической практике. Российский биотерапевтический журнал. 2003;2(4):67-71 [Gelfond ML, Barchuk AS, Vasiljev DV, Stukov AN. PDT opportunities in oncology practice. Russian Journal of Biotherapy. 2003;2(4):67-71 (In Russ.)].

Gusti-Ngurah-Putu EP, Huang L, Hsu YC. Effective combined photodynamic therapy with lipid platinum chloride nanoparticles therapies of oral squamous carcinoma tumor inhibition. J. Clin Med. 2019;8(12):2112. https://doi.org/10.3390/jcm8122112.

Doherty RE, Sazanovich IV, McKenzie LK, et al. Photodynamic killing of cancer cells by a Platinum (II) complex with cyclometallating ligand. Sci. Rep. 2016;6(1):22668. https://doi.org/10.1038/srep22668.

Wallace J. Humane endpoints and cancer research. ILAR Journal. 2000;41(2):87-93. https://doi.org/10.1093/ilar.41.2.87.

Трещалина ЕМ, Жукова ОС, Герасимова ГК, и др. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Часть 1. Москва: Гриф и К. 2012:640-54 [Treshchalina EM, Zhukova OS, Gerasimova GK et al. Guidelines for the preclinical study of the antitumor activity of drugs. In: Guidelines for conducting preclinical studies of drugs. Part 1. Moscow: Grif and K. 2012:640-54 (In Russ.)].

Круглов СС, Гельфонд МЛ, Тындык МЛ, и др. Методические аспекты проведения фотодинамической терапии солидной карциномы Эрлиха у мышей линии BALB/C с различной локализацией опухоли. Сибирский онкологический журнал. 2020;19(6):82-92 [Kruglov SS, Gelfond ML, Tyndyk ML et al. Methodological Aspects of Photodynamic Therapy of Ehrlich Solid Carcinoma in BALB/C Mouse Strain with Various Tumor Localization. Siberian Journal of Oncology. 2020;19(6):82-92 (In Russ.)]. https://doi.org/10.21294/1814-4861-2020-19-6-82-92.

Roozeboom MH, Nelemans PJ, Mosterd K, et al. Photodynamic therapy vs. topical imiquimod for treatment of superficial basal cell carcinoma: A subgroup analysis within a noninferiority randomized controlled trial. Br J Dermatol. 2015;172(3):739-45. https://doi.org/10.1111/bjd.13299.

Kireeva G, Kruglov S, Maydin M, et al. Modeling of chemoperfusion vs. intravenous administration of cisplatin in Wistar rats: Adsorption and tissue distribution. Molecules. 2020;25(20):4733. https://doi.org/10.3390/molecules25204733.

Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: Part two – cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy. 2005;2(1):1-23. https://doi.org/10.1016/S1572-1000(05)00030-X.

Коршунова ОВ, Плехова НГ. Фотодинамическая терапия в онкологии: настоящее и будущее. Тихоокеанский медицинский журнал. 2020;4:15-9. [Korshunova OV, Plekhova NG. Photodynamic therapy in oncology: Present and future. Pacific Medical Journal. 2020;(4):15-9 (In Russ.)]. https://doi.org/10.34215/1609-1175-2020-4-15-19.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023