Pathogenetic Mechanisms of the Relationship between Chronic Obstructive Pulmonary Disease and Lung Cancer
##article.numberofdownloads## 120
##article.numberofviews## 165
pdf (Русский)

Keywords

review
lung cancer
chronic obstructive pulmonary disease
pathobiological processes

How to Cite

Shuginova, T. N., Simakova, M. A., Moiseenko, F. V., & Shaporova, N. L. (2023). Pathogenetic Mechanisms of the Relationship between Chronic Obstructive Pulmonary Disease and Lung Cancer. Voprosy Onkologii, 69(5), 835–843. https://doi.org/10.37469/0507-3758-2023-69-5-835-843

Abstract

Lung cancer and chronic obstructive pulmonary disease (COPD) are the most common causes of death in patients worldwide. The etiology of these diseases is based on alterations in alveolocytes and other cells that form the lining of the surface of the respiratory tree. These alterations manifest in the context of persistent exposure to nicotine and tobacco combustion products. Persistent inflammation under conditions of impaired reparative processes, as well as changes at the level of epigenetic processes of regulation of the genome, take place in structural and functional changes in the lungs. Genomic-wide association studies among patients with COPD and lung cancer, aimed at identifying candidate genes for the development of these polygenic diseases, have revealed common loci of single nucleotide polymorphisms of cholinergic receptors of nicotinic alpha subunit CHRNA3 and CHRNA5, as well as regions in 4q31,4q24 and 5q, demonstrating the commonality of these pathologies. These data highlight the importance of expanding research on the interrelation and association between lung cancer and COPD.

https://doi.org/10.37469/0507-3758-2023-69-5-835-843
##article.numberofdownloads## 120
##article.numberofviews## 165
pdf (Русский)

References

GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020;8(6):585-596. https://doi.org/10.1016/S2213-2600(20)30105-3.

Авдеев С.Н. Хроническая обструктивная болезнь легких: обострения. Пульмонология. 2013;3:5-19 [Avdeev SN. Acute exacerbation of chronic obstructive pulmonary disease. Russian Pulmonology. 2013;(3):5-19 (In Russ.)]. https://doi.org/10.18093/0869-0189-2013-0-3-5-19.

Çolak Y, Afzal S, Nordestgaard BG, et al. Importance of early COPD in young adults for development of clinical COPD: Findings from the Copenhagen General Population Study. Am J Respir Crit Care Med. 2021;203(10):1245-1256. https://doi.org/10.1164/rccm.202003-0532OC.

Айсанов З.Р., Чучалин А.Г., Калманова Е.Н. Хроническая обструктивная болезнь легких и сердечно-сосудистая коморбидность. Кардиология. 2019;59(8S):24-36 [Aisanov ZR, Chuchalin AG, Kalmanova EN. Chronic obstructive pulmonary disease and cardiovascular comorbidity. Kardiologiia. 2019;59(8S):24-36 (In Russ.)]. https://doi.org/10.18087/cardio.2572.

Flenley DC. Chronic obstructive pulmonary disease. Dis Mon. 1988;34(9):537-99. https://doi.org/10.1016/0011-5029(88)90015-6.

Kim V, Crapo J, Zhao H, et al. Comparison between an alternative and the classic definition of chronic bronchitis in COPDGene. Ann Am Thorac Soc. 2015;12(3):332-9. https://doi.org/10.1513/AnnalsATS.201411-518OC.

Хроническая обструктивная болезнь легких: клинические рекомендации, 2021. Министерство здравоохранения РФ [официальный сайт]. [Chronic obstructive pulmonary disease: clinical guidelines [Internet]. Ministry of Health of the Russian Federation (In Russ.)]. Available from: https://cr.minzdrav.gov.ru/recomend/603_2.

Global Initiative for Asthma [Internet]. Global Strategy for Asthma Management and Prevention. 2019;119-128. Available from: www.ginasthma.org.

Kim WD. Phenotype of chronic obstructive pulmonary disease based on computed tomography-defined underlying pathology. Tuberc Respir Dis (Seoul). 2022;85(4):302-312. https://doi.org/10.4046/trd.2022.0029.

Lim JU, Kim EK, Lim SY, et al. Mixed phenotype of emphysema and airway wall thickening is associated with frequent exacerbation in chronic obstructive pulmonary disease patients. Int J Chron Obstruct Pulmon Dis. 2019;14:3035-3042. https://doi.org/10.2147/COPD.S227377.

Koskela J, Kilpeläinen M, Kupiainen H, et al. Co-morbidities are the key nominators of the health related quality of life in mild and moderate COPD. BMC Pulm Med. 2014;14:102. https://doi.org/10.1186/1471-2466-14-102.

Mirza S, Benzo R. Chronic obstructive pulmonary disease phenotypes: implications for care. Mayo Clin Proc. 2017;92(7):1104-1112. https://doi.org/10.1016/j.mayocp.2017.03.020.

Lahousse L, Ziere G, Verlinden VJ, et al. Risk of frailty in elderly with COPD: A population-based study. J Gerontol A Biol Sci Med Sci. 2016;71(5):689-95. https://doi.org/10.1093/gerona/glv154.

Mittal N, Raj R, Islam EA, et al. The frequency of frailty in ambulatory patients with chronic lung diseases. J Prim Care Community Health. 2016;7(1):10-5. https://doi.org/10.1177/2150131915603202.

Laurin C, Moullec G, Bacon SL, et al. Impact of anxiety and depression on chronic obstructive pulmonary disease exacerbation risk. Am J Respir Crit Care Med. 2012;185(9):918-23. https://doi.org/10.1164/rccm.201105-0939PP.

Rossi A, Butorac-Petanjek B, Chilosi M, et al. Chronic obstructive pulmonary disease with mild airflow limitation: current knowledge and proposal for future research - a consensus document from six scientific societies. Int J Chron Obstruct Pulmon Dis. 2017;12:2593-2610. https://doi.org/10.2147/COPD.S132236.

Каприн А.Д. Состояние онкологической помощи населению России в 2017 г. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России, 2018 [Kaprin AD. The state of cancer care in Russia in 2017. AD Kaprin, VV Starinskij, GV Petrova, eds. Moscow: FSBI P. Herzen Moscow Oncology Research Institute of the Ministry of Health of Russia. 2018 (In Russ.)].

Ang L, Ghosh P, Seow WJ. Association between previous lung diseases and lung cancer risk: a systematic review and meta-analysis. Carcinogenesis. 2021;42(12):1461-1474. https://doi.org/10.1093/carcin/bgab082.

Wang W, Dou S, Dong W, et al. Impact of COPD on prognosis of lung cancer: from a perspective on disease heterogeneity. Int J Chron Obstruct Pulmon Dis. 2018;13:3767-3776. https://doi.org/10.2147/COPD.S168048.

Tubío-Pérez RA, Torres-Durán M, Pérez-Ríos M, et al. Lung emphysema and lung cancer: what do we know about it? Ann Transl Med. 2020;8(21):1471. https://doi.org/10.21037/atm-20-1180.

Amundson WH, Swanson EJ, Petersen A, et al. Quantification of perinodular emphysema in high-risk patients offers no benefit in lung nodule risk-stratification of malignancy potential. J Thorac Imaging. 2020;35(2):108-114. https://doi.org/10.1097/RTI.0000000000000465.

Wilson DO, Weissfeld JL, Balkan A, et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med. 2008;178(7):738-44. https://doi.org/10.1164/rccm.200803-435OC.

Theodorakopoulou MP, Alexandrou ME, Bakaloudi DR, et al. Endothelial dysfunction in COPD: a systematic review and meta-analysis of studies using different functional assessment methods. ERJ Open Res. 2021;7(2):00983-2020. https://doi.org/10.1183/23120541.00983-2020.

Kadara H, Scheet P, Wistuba II. Early events in the molecular pathogenesis of lung cancer. Cancer Prev Res (Phila). 2016;9(7):518-27. https://doi.org/10.1158/1940-6207.CAPR-15-0400.

Durham AL, Adcock IM. The relationship between COPD and lung cancer. Lung Cancer. 2015;90(2):121-7. https://doi.org/10.1016/j.lungcan.2015.08.017.

Proctor RN. The history of the discovery of the cigarette-lung cancer link: evidentiary traditions, corporate denial, global toll. Tob Control. 2012;21(2):87-91. https://doi.org/10.1136/tobaccocontrol-2011-050338.

Oh JY, Sin DD. Lung inflammation in COPD: why does it matter? F1000 Med Rep. 2012;4:23. https://doi.org/10.3410/M4-23.

Raviv S, Hawkins KA, DeCamp MM Jr, et al. Lung cancer in chronic obstructive pulmonary disease: enhancing surgical options and outcomes. Am J Respir Crit Care Med. 2011;183(9):1138-46. https://doi.org/10.1164/rccm.201008-1274CI.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. https://doi.org/10.1016/j.cell.2011.02.013.

Szebeni GJ, Vizler C, Kitajka K, et al. Inflammation and cancer: extra- and intracellular determinants of tumor-associated macrophages as tumor promoters. Mediators Inflamm. 2017;2017:9294018. https://doi.org/10.1155/2017/9294018.

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565-70. https://doi.org/10.1126/science.1203486.

Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329-60. https://doi.org/10.1146/annurev.immunol.22.012703.104803.

Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107-11. https://doi.org/10.1038/35074122.

Шугинова Т.Н., Мелдо А.А., Шапорова Н.Л. и др. Особенности функции внешнего дыхания у пациентов с хронической обструктивной болезнью легких в сочетании с немелкоклеточным раком легкого. Терапия №8, 2021 [Shuginova TN, Meldo AA, Shaporova NL, et al. Pulmonary function test for chronic obstructive pulmonary disease patients with non-small cell lung cancer. (In Russ.)]. https://dx.doi.org/10.18565/therapy.2021.8.46-53.

Turner MC, Chen Y, Krewski D, et al. Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med. 2007;176(3):285-90. https://doi.org/10.1164/rccm.200612-1792OC.

Ingebrigtsen T, Thomsen SF, Vestbo J, et al. Genetic influences on Chronic Obstructive Pulmonary Disease - a twin study. Respir Med. 2010;104(12):1890-5. https://doi.org/10.1016/j.rmed.2010.05.004.

Zhou JJ, Cho MH, Castaldi PJ, et al. Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am J Respir Crit Care Med. 2013;188(8):941-7. https://doi.org/10.1164/rccm.201302-0263OC.

Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421. https://doi.org/10.1371/journal.pgen.1000421.

Wilk JB, Chen TH, Gottlieb DJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 2009;5(3):e1000429. https://doi.org/10.1371/journal.pgen.1000429.

Cho MH, Boutaoui N, Klanderman BJ, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet. 2010;42(3):200-2. https://doi.org/10.1038/ng.535.

Cho MH, Castaldi PJ, Wan ES, et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet. 2012;21(4):947-57. https://doi.org/10.1093/hmg/ddr524.

Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet. 2005;365(9478):2225-36. https://doi.org/10.1016/S0140-6736(05)66781-5.

Bailey-Wilson JE, Amos CI, et al. A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet. 2004;75(3):460-74. https://doi.org/10.1086/423857.

Lo Iacono M, Monica V, Saviozzi S, et al. p63 and p73 isoform expression in non-small cell lung cancer and corresponding morphological normal lung tissue. J Thorac Oncol. 2011;6(3):473-81. https://doi.org/10.1097/JTO.0b013e31820b86b0.

Bechtel JJ, Kelley WA, Coons TA, et al. Lung cancer detection in patients with airflow obstruction identified in a primary care outpatient practice. Chest. 2005;127(4):1140-5. https://doi.org/10.1378/chest.127.4.1140.

Amos CI, Wu X, Broderick P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40(5):616-22. https://doi.org/10.1038/ng.109.

Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):45-52. https://doi.org/10.1038/ng.500.

Wang X, Li W, Huang K,et al. Genetic variants in ADAM33 are associated with airway inflammation and lung function in COPD. BMC Pulm Med. 2014;14:173. https://doi.org/10.1186/1471-2466-14-173.

Sakornsakolpat P, Prokopenko D, Lamontagne M, et al.; SpiroMeta consortium; international COPD Genetics Consortium. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet. 2019;51(3):494-505. https://doi.org/10.1038/s41588-018-0342-2.

Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233-45. https://doi.org/10.1038/nrc3477.

Chen J, Li X, Huang C, et al. change of serum inflammatory cytokines levels in patients with chronic obstructive pulmonary disease, pneumonia and lung cancer. Technol Cancer Res Treat. 2020;19:1533033820951807. https://doi.org/10.1177/1533033820951807.

Jungnickel C, Schmidt LH, Bittigkoffer L, et al. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth. Oncogene. 2017;36(29):4182-4190. https://doi.org/10.1038/onc.2017.28.

de-Torres JP, Wilson DO, Sanchez-Salcedo P, et al. Lung cancer in patients with chronic obstructive pulmonary disease. Development and validation of the COPD Lung Cancer Screening Score. Am J Respir Crit Care Med. 2015;191(3):285-91. https://doi.org/10.1164/rccm.201407-1210OC.

Gomes M, Teixeira AL, Coelho A, et al. The role of inflammation in lung cancer. Adv Exp Med Biol. 2014;816:1-23. https://doi.org/10.1007/978-3-0348-0837-8_1.

Moro L, Pedone C, Scarlata S, et al. Endothelial dysfunction in chronic obstructive pulmonary disease. Angiology. 2008;59(3):357-64. https://doi.org/10.1177/0003319707306141.

Zhang WM, Zhou J, Ye QJ. Endothelin-1 enhances proliferation of lung cancer cells by increasing intracellular free Ca2+. Life Sci. 2008;82(13-14):764-71. https://doi.org/10.1016/j.lfs.2008.01.008.

Kobayashi H, Boelte KC, Lin PC. Endothelial cell adhesion molecules and cancer progression. Curr Med Chem. 2007;14(4):377-86. https://doi.org/10.2174/092986707779941032.

Elangbam CS, Qualls CW, Dahlgren RR. Cell adhesion molecules--update. Vet Pathol. 1997;34(1):61-73. https://doi.org/10.1177/030098589703400113.

Bai X, Guo ZQ, Zhang YP, et al. CDK4/6 inhibition triggers ICAM1-driven immune response and sensitizes LKB1 mutant lung cancer to immunotherapy. Nat Commun. 2023;14(1):1247. https://doi.org/10.1038/s41467-023-36892-4.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023