Semi-Quantitative Analysis of Mirna-21 in Saliva and Blood Plasma as a Non-Invasive Method for Diagnosing Colorectal Cancer, Lung Cancer and Glial Tumors
pdf (Русский)

Keywords

molecular diagnostics
miRNA-21
saliva
real-time reverse transcription-polymerase chain reaction (RT-PCR)
colorectal cancer (CRC)
blood plasma

How to Cite

Kiseleva, E. V., Nefedev, F. S., Zaharenko, A. A., Zaraiski, M. I., & Seliverstov, R. Y. (2023). Semi-Quantitative Analysis of Mirna-21 in Saliva and Blood Plasma as a Non-Invasive Method for Diagnosing Colorectal Cancer, Lung Cancer and Glial Tumors. Voprosy Onkologii, 69(5), 863–870. https://doi.org/10.37469/0507-3758-2023-69-5-863-870

Abstract

Aim. To evaluate miRNA-21 expression levels in saliva and blood plasma as a diagnostic method for colorectal cancer (CRC), lung cancer (LC), and cerebral gliomas (CG).

Materials and methods. The expression levels of miRNA-21 in blood plasma (PmiR-21) and saliva (SmiR-21) of patients with CRC (n = 65), LC (n = 14), CG (n = 21), and 66 healthy volunteers as a control group (CG), were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR) and expressed in arbitrary units (AU). Univariate analysis was applied to identify predictors for CRC, LC, and CG. Logistic regression was used to create risk categories for the presence of cancer.

Results. SmiR-21 (AU) in CRC (9.67 ± 18.52), CG (2.51 ± 2.39), LC (12.27 ± 14.78), and CG (1.30 ± 2.45), as well as PmiR-21 (AU) in CRC (3.71 ± 7.38), CG (2.17 ± 2.05), LC (8.69 ± 6.76), and CG (0.84 ± 0.64), differed significantly (p < 0.001). SmiR-21, but not PmiR-21, was higher in CRC with shallow tumor invasion (T in situ, T2) compared to T4 (p = 0.004; p = 0.042). This trend was not observed in LC patients (SmiR-21: p = 0.36; PmiR-21: p = 0.6). Predictors for CRC were age > 61 years, SmiR-21 ≥ 2.0 AU, or PmiR-21 ≥ 1.6 AU (sensitivity and specificity — 52 % and 89 %, 61 % and 83 %, respectively). Predictors for LC were age ≥ 54 years, PmiR-21 ≥ 3.5 AU, or SmiR-21 ≥ 2.5 AU (sensitivity and specificity — 78 % and 64 %, 100 % and 86 %, respectively). For CG patients, predictors were PmiR-21 ≥ 1.5 AU or SmiR-21 ≥ 1.6 AU (sensitivity and specificity — 57 % and 71 %, 88 % and 77 %, respectively). Regression analysis for predicting the presence of cancer based on SmiR-21 performed well in CRC (AuROC = 0.79), unlike LC (AuROC = 0.70) and CG (AuROC = 0.55).

Conclusion. SmiR-21 shows promise for diagnosing cancer and can be used as a new non-invasive test for CRC, including its early stages, and for solid tumors in other locations.

https://doi.org/10.37469/0507-3758-2023-69-5-863-870
pdf (Русский)

References

Ciccolallo L, Capocaccia R, Coleman MP, et al. Survival differences between European and US patients with colorectal cancer: role of stage at diagnosis and surgery. Gut. 2005;54(2):268-73. https://doi.org/10.1136/gut.2004.044214.

Wei J, Gao W, Zhu CJ, et al. Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer. 2011;30(6):407-14. https://doi.org/10.5732/cjc.010.10522.

Crocetti E, Trama A, Stiller C, et al. Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer. 2012;48(10):1532-42. https://doi.org/10.1016/j.ejca.2011.12.013.

Немцова М.В., Кушлинский Н.Е. Молекулярно-биологические маркеры в практической онкологии. Лабораторная служба. 2014;3(1):14‑22 [Nemtsova MV, Kushlinskiĭ NE. Molecular Biological Markers in Oncological Practice. Laboratory Service. 2014;3(1):14‑22 (In Russ.)].

Wang H, Peng R, Wang J, et al. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics. 2018;10:59. https://doi.org/10.1186/s13148-018-0492-1.

Shen J, Stass SA, Jiang F. MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett. 2013;329(2):125-36. https://doi.org/10.1016/j.canlet.2012.11.001.

Vanni I, Alama A, Grossi F, et al. Exosomes: a new horizon in lung cancer. Drug Discov Today. 2017;22(6):927-36. https://doi.org/10.1016/j.drudis.2017.03.004.

Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;12:358-369. https://doi.org/10.1038/nrg3198.

Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008;455(7209):64-71. https://doi.org/10.1038/nature07242.

Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010;10(3):297-308. https://doi.org/10.1586/erm.10.11.

Tsujiura M, Ichikawa D, Komatsu S, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102(7):1174-9. https://doi.org/10.1038/sj.bjc.6605608.

Ali S, Almhanna K, Chen W, et al. Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res. 2010;3(1):28-47.

Bihrer V, Waidmann O, Friedrich-Rust M, et al. Serum microRNA-21 as marker for necroinflammation in hepatitis C patients with and without hepatocellular carcinoma. PLoS One. 2011;6(10):e26971. https://doi.org/10.1371/journal.pone.0026971.

Komatsu S, Ichikawa D, Takeshita H, et al. Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2011;105(1):104-11. https://doi.org/10.1038/bjc.2011.198.

Xu F, Xu L, Wang M, et al. The accuracy of circulating microRNA-21 in the diagnosis of colorectal cancer: a systematic review and meta-analysis. Colorectal Dis. 2015;17(5):O100-7. https://doi.org/10.1111/codi.12917.

Zeng W, Tu Y, Zhu Y, et al. Predictive power of circulating miRNAs in detecting colorectal cancer. Tumour Biol. 2015;36(4):2559-67. https://doi.org/10.1007/s13277-014-2872-2.

Селиверстов Р.Ю., Зарайский М.И., Тюрин Р.В., и др. МикроРНК в мониторинге эволюции глиальных церебральных опухолей. Сибирский онкологический журнал. 2020;19(3):47-53 [Seliverstov RYu, Zaraiskiy MI, Tyurin RV, et al. MicroRNA in monitoring of the evolution of glial cerebral tumors. Siberian Journal of Oncology. 2020;19(3):47-53 (In Russ)]. https://doi.org/10.21294/1814-4861-2020-19-3-47-53.

Sazanov AA, Kiselyova EV, Zakharenko AA, et al. Plasma and saliva miR-21 expression in colorectal cancer patients. J ApplGenet. 2017;58(2):231-237. https://doi.org/10.1007/s13353-016-0379-9.

О. Реброва. Статистический анализ медицинских данных. Применение пакета прикладных программ STATISTICA. МедиаСфера: Москва, 2002 [Rebrova OYu. Statistical analysis of medical data. Application of the application package STATISTICA. MediaSphere: Moscow, 2002 (In Russ.)].

Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010;10(3):297-308. https://doi.org/10.1586/erm.10.11.

Salem M, Okba S, Morad S, et al. Altered expression of miRNA-155 and miRNA-21 and higher numbers of T cells in the peripheral blood of early diagnosed lung cancer patients. Int J Cancer Biomed Res. 2020;4(1):19-25. https://doi.org/10.21608/jcbr.2020.21668.1009.

Knudsen AB, Zauber AG, Rutter CM, et al. Estimation of benefits, burden, and harms of colorectal cancer screening strategies: modeling study for the US preventive services task force. JAMA. 2016;315(23):2595-609. https://doi.org/10.1001/jama.2016.6828.

Fitzpatrick-Lewis D, Ali MU, Warren R, et al. Screening for colorectal cancer: a systematic review and meta-analysis. Clin Colorectal Cancer. 2016;15(4):298-313. https://doi.org/10.1016/j.clcc.2016.03.003.

Nielsen BS, Jørgensen S, Fog JU, et al. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis. 2011;28(1):27-38. https://doi.org/10.1007/s10585-010-9355-7.

Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299(4):425-36. https://doi.org/10.1001/jama.299.4.425.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023