Abstract
Radiotherapy (RT) is a vital approach in treating tumors, especially as a follow-up to surgical procedures in cancer therapy. In this article, we explored the advancements in treating breast tumors using carbon beams combined with varying concentrations of gold nanoparticles (GNPs). Our simulations, conducted with the GEANT4 code, indicate that as we increase the energy of the carbon beam and its distance from the starting point of the breast phantom, the absorbed dose tends to decrease. This is accompanied by a shift in the location of the Bragg peak (BP) to higher values of x as the incident carbon beam energy rises. Interestingly, we found that the lowest absorbed dose occurs in the absence of GNPs; however, as the injection rate of GNPs increases alongside the carbon beam irradiation, the absorbed dose rises compared to cases without GNP injection. This increase can be attributed to the presence of high-Z nanoparticles, like GNPs, which generate secondary electrons that enhance the dose deposited in both the tumor and its surrounding environment. Our findings suggest that for the studied phantom with the given geometry, a carbon beam energy range of 70 to 110 MeV/u is optimal, with the best results achieved at a Bragg’s energy of 110 MeV/u.
References
Sulaiman N.S., Demizu Y., Koto M., et al. Multicenter study of carbon-ion radiation therapy for adenoid cystic carcinoma of the head and neck: subanalysis of the Japan carbon-ion radiation oncology study group (J-CROS) study (1402 HN). Int J Radiat Oncol Biol Phys. 2018; 100: 639–46.-DOI: https://doi.org/10.1016/j.ijrobp.2017.11.010.
Koto M., Demizu Y., Saitoh J.I., et al. Multicenter study of carbon-ion radiation therapy for mucosal melanoma of the head and neck: subanalysis of the Japan carbon-ion radiation oncology study group (J-CROS) study (1402 HN). Int J Radiat Oncol Biol Phys. 2017; 97: 1054–60.-DOI: https://doi.org/10.1016/j.ijrobp.2016.12.028.
Bhattacharyya T., Koto M., Ikawa H., et al. First prospective feasibility study of carbon-ion radiotherapy using compact superconducting rotating gantry. Br J Radiol. 2019; 92: 20190370.-DOI: https://doi.org/10.1259/bjr.20190370.
Sokol O., Durante M. Carbon ions for hypoxic tumors: are we making the most of them? Cancers (Basel) 15:4494.-DOI: https://doi.org/10.3390/cancers15184494.
Hagiwara Y., Bhattacharyya T., Matsufuji N., et al. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer. Clin Transl Radiat Oncol. 2020; 21: 19–24.-DOI: https://doi.org/10.1016/j.ctro.2019.11.002.
Matsumoto S., Lee S.H., Imai R., et al. Unresectable chondrosarcomas treated with carbon ion radiotherapy: relationship between dose-averaged linear energy transfer and local recurrence. Anticancer Res. 2020; 40: 6429–35.-DOI: https://doi.org/10.21873/anticanres.14664.
Morelli L., Parrella G., Molinelli S., et al. A dosiomics analysis based on linear energy transfer and biological dose maps to predict local recurrence in sacral chordomas after carbon-ion radiotherapy. Cancers (Basel). 2022; 15: 33.-DOI: https://doi.org/10.3390/cancers15010033.
Okonogi N., Matsumoto S., Fukahori M., et al. Dose-averaged linear energy transfer per se does not correlate with late rectal complications in carbon-ion radiotherapy. Radiother Oncol. 2020; 153: 272–8.-DOI: https://doi.org/10.1016/j.radonc.2020.08.029.
Mori Y., Okonogi N., Matsumoto S., et al. Effects of dose and dose-averaged linear energy transfer on pelvic insufficiency fractures after carbon-ion radiotherapy for uterine carcinoma. Radiother Oncol. 2022; 177: 33–9.-DOI: https://doi.org/10.1016/j.radonc.2022.10.008.
Guardiola C., Prezado Y.. High-energy charged particles for spatially fractionated radiation therapy. Front Phys. 2020; 8: 299.-DOI: https://doi.org/10.3389/fphy.2020.00299.
Kohno R., Koto M., Ikawa H., et al. High–linear energy transfer irradiation in clinical carbon-ion beam with the linear energy transfer painting technique for patients with head and neck cancer. Adv Radiat Oncol. 2023.-DOI: https://doi.org/10.1016/j.adro.2023.101317.
Das S., Dey M.K., Devireddy R., Gartia M.R. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors. 2024; 24(1): 37.-DOI: https://doi.org/10.3390/s24010037.
Pillai G. Nanotechnology toward treating cancer. Applications of targeted nano drugs and delivery systems. 2019; 221–56.-DOI: https://doi.org/10.1016/B978-0-12-814029-1.00009-0.
Eisenhauer E.A., Therasse P., Bogaerts J., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer version. 2009; 228–47; 1: 45.-DOI: https://doi.org/10.1016/j.ejca.2008.10.026.
Koto M., Hasegawa A., Takagi R., et al. Feasibility of carbon ion radiotherapy for locally advanced sinonasal adenocarcinoma. Radiother Oncol. 2014; 113: 60–5.-DOI: https://doi.org/10.1016/j.radonc.2014.09.009.
Inaniwa T., Kanematsu N., Matsufuji N., et al. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences. Japan Phys Med Biol. 2015; 60: 3271–86.-DOI: https://doi.org/10.1088/0031-9155/60/8/3271.
Rosenfeld A.B. Novel detectors for silicon based microdosimetry, their concepts and applications. Nucl Instrum Methods Phys Res A. 2016; 809: 156–70.-DOI: https://doi.org/10.1016/j.nima.2015.08.059.
Lee S.H., Mizushima K., Kohno R., et al. Estimating the biological effects of helium, carbon, oxygen, and neon ion beams using 3d silicon microdosimeters. Phys Med Biol. 2021; 66: 045017.-DOI: https://doi.org/10.1088/1361-6560/abd66f.
Mizoe J.E., Hasegawa A., Jingu K., et al. Results of carbon ion radiotherapy for head and neck cancer. Radiother Oncol.-DOI: 2012; 103: 32–7. https://doi.org/10.1016/j.radonc.2011.12.013.
Kopp B., Mein S., Dokic I., et al. Development and validation of single field multi-ion particle therapy treatments. Int J Radiat OncolBiol Phys. 2020; 106: 194–205.-DOI: https://doi.org/10.1016/j.ijrobp.2019.10.008.
Ebner D.K., Frank S.J., Inaniwa T., et al. The emerging potential of multi-ion radiotherapy. Front Oncol. 2021; 11: 624786.-DOI: https://doi.org/10.3389/fonc.2021.624786.
Inaniwa T., Suzuki M., Hyun Lee S.H., et al. Experimental validation of stochastic microdosimetric kinetic model for multi-ion therapy treatment planning with helium-, carbon-, oxygen-, and neon-ion beams. Phys Med Biol. 2020; 65: 045005.-DOI: https://doi.org/10.1088/1361-6560/ab6eba.
Pompos A., Foote R.L., Koong A.C., et al. National effort to re-establish heavy ion cancer therapy in the United States. Front Oncol. 2022; 12: 880712.-DOI: https://doi.org/10.3389/fonc.2022.880712.
Bag N., Bardhan S., Roy S., et al. Nanoparticle-mediated stimulus-responsive antibacterial therapy. Biomater Sci. 2023; 11(6): 1994–2019.-DOI: https://doi.org/10.1039/d2bm01941h.
Baghirov H. Receptor–mediated transcytosis of macromolecules across the blood–brain barrier. Expert Opin Drug Deliv. 2023; 20(12): 1699–711.-DOI: https://doi.org/10.1080/17425247.2023.2255138.
Ezhilarasan D., Shree Harini K. Nanodrug delivery: Strategies to circumvent nanoparticle trafficking by Kupffer cells in the liver. J Drug Deliv Sci Technol. 2023; 86: 104731.-DOI: https://doi.org/10.1016/j.jddst.2023.104731
Campos B., Olsen L.R., Urup T., Poulsen H.S. A comprehensive profile of recurrent glioblastoma. Oncogene. 2016; 35(45): 5819–25.-DOI: https://doi.org/10.1038/onc.2016.85.
Chang C., Wang C., Zhang C., et al. Albumin-encapsulated platinum nanoparticles for targeted photothermal treatment of glioma. J Biomed Nanotechnol. 2019; 15(8): 1744–53.-DOI: https://doi.org/10.1166/jbn.2019.2803.
Chen X., Momin A., Wanggou S., et al. Mechanosensitive brain tumor cells construct blood-tumor barrier to mask chemosensitivity. Neuron. 2023; 111(1): 30-48.e14.-DOI: https://doi.org/10.1016/j.neuron.2022.10.007.
Chester C., Sanmamed M.F., Wang J., Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018 Jan 4; 131(1): 49–57.-DOI: https://doi.org/10.1182/blood-2017-06-741041.
Reddy S., Tatiparti K., Sau S., Iyer A.K. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discovery Today. 2021; 26(8): 1944–52.-DOI: https://doi.org/10.1016/j.drudis.2021.04.008.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025
