Assessment of Prognostic Value of Delayed-Type Hypersensitivity (DTH) Reaction in The Application of Autologous Dendritic Cell Vaccine in Patients with Melanoma and Soft Tissue Sarcomas
##article.numberofdownloads## 7
##article.numberofviews## 51
pdf (Русский)

Keywords

autologous dendritic cell vaccine
melanoma
soft tissue sarcoma
delayed-type hypersensitivity

How to Cite

Nekhaeva, T. L., Savchenko, P. A., Novik, A. V., Efremova, N. A., & Baldueva, I. A. (2025). Assessment of Prognostic Value of Delayed-Type Hypersensitivity (DTH) Reaction in The Application of Autologous Dendritic Cell Vaccine in Patients with Melanoma and Soft Tissue Sarcomas. Voprosy Onkologii, 70(6), 1077–1085. https://doi.org/10.37469/0507-3758-2024-70-6-1077-1085

Abstract

Introduction. Dendritic cell vaccine (DCV) therapy is a promising immunotherapeutic approach for the treatment of malignant tumors. Estimation of delayed-type hypersensitivity (DTH) reaction is the useful method to determine the immunological efficacy of DCV application.

Aim. Evaluation of the prognostic value of DTH response in patients with melanoma (Mel) and soft tissue sarcoma (STS) receiving autologous antitumor DCV.

Materials and Methods. The study sample included 277 patients with morphologically verified diagnosis of Mel (n = 143), STS (n = 134), receiving DCV at the N.N. Petrov National Medical Research Centre of Oncology from 2009 to 2023 in adjuvant (78.3 % и 14.9 %) and therapeutic (21.7 % и 85.1 %) regimens for Mel and STS, respectively. Adjuvant therapy was performed in stage II-IV patients with a high risk of recurrence after complete cytoreduction. Therapeutic vaccine therapy was only used in patients who had exhausted their standard treatment options and had tumor foci. DCV was injected intradermally paravertebrally every 2-4 weeks at a total dose of at least 9-10 million cells. The DTH response was assessed 24 hours after each DCV injection by measuring papule size and hyperemia at the injection sites. The increase in DTH response ≥ 10 mm on treatment was considered a conversion of the DTH response. Multivariate Cox regression analysis was used to statistically evaluate DTH response parameters and their association with overall survival (OS) and time to progression (TTP).

Results. The conversion of the DTH response is a factor independent of other parameters (diagnosis, therapy regimen). In a multivariate model, the presence of DTH response conversion reduced the risk of death by 46 % (95 % CI 21-64 %; p = 0.02) and the risk of progression by 39 % (95 % CI 20-55 %; p = 0.001). The presence of conversion did not have strong (> 0.7) correlations of the regression residuals, confirming the independence of the variable.

Conclusion. Assessment of the DTH response to DCV injection is an important indicator to be determined during the course of treatment. Conversion of the DTH response is associated with an increase in TTP and OS and should be considered as an efficacy objective in patients with Mel and STS receiving autologous DCV.

https://doi.org/10.37469/0507-3758-2024-70-6-1077-1085
##article.numberofdownloads## 7
##article.numberofviews## 51
pdf (Русский)

References

Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Состояние онкологической помощи населению России в 2022 году. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022; (илл.): 239.-URL: https://oncology-association.ru/wp-content/uploads/2023/08/sop-2022-el.versiya_compressed.pdf. [Ed. by Kaprin A.D., Starinskiy V.V., Shakhzadova A.O. Malignant neoplasms in Russia in 2022 (morbidity and mortality). Moscow: P.A. Herzen Moscow State Medical Research Institute - branch of the Federal State Budgetary Institution "NMRC of Radiology" of the Ministry of Health of Russia. 2022; (ill.): 252.-URL: https://oncology-association.ru/wp-content/uploads/2023/08/sop-2022-el.versiya_compressed.pdf. (In Rus)].

Suda K. The ABCs of preventing hyperprogressive disease after immunotherapy: awareness, biomarkers, and combination. J Thorac Dis. 2019; 11(3, Suppl): S347-S351.-DOI: https://doi.org/10.21037/jtd.2018.12.112.-URL: https://www.ncbi.nlm.nih.gov/pubmed/30997217.

Балдуева И.А., Нехаева Т.Л., Проценко С.А., et al. Дендритноклеточные вакцины в иммунотерапии больных солидными опухолями: учебное пособие для врачей и обучающихся в системе высшего и дополнительного профессионального образования.: СПб.: НМИЦ онкологии им. Н.Н. Петрова. 2020.-URL: https://www.niioncologii.ru/science/oncoimmunology/dendritnokletochnye-vakciny-v-immunoterapii-bolnyh-solidnymi-opuholyami.pdf. [Baldueva I.A., Nehaeva T.L., Protsenko S.A., et al. Dendritic-cell vaccines in immunotherapy of patients with solid tumors: a manual for doctors and students in the system of higher and postgraduate education. Дендритноклеточные вакцины в иммунотерапии больных солидными опухолями: учебное пособие для врачей и обучающихся в системе высшего и дополнительного профессионального образования.: St. Petersburg: N.N. Petrov NMRC of Oncology. 2020.-URL: https://www.niioncologii.ru/science/oncoimmunology/dendritnokletochnye-vakciny-v-immunoterapii-bolnyh-solidnymi-opuholyami.pdf. (In Rus)].

Новик А.В., Яременко Е.В., Анохина Е.М., et al. Использование систем RECIST 1.1 и irRc для оценки ответа на терапию ипилимумабом или дендритноклеточными вакцинами у пациентов с диссеминированной меланомой кожи. Сибирский онкологический журнал. 2019; 18(4): 13-20.-DOI: https://doi.org/10.21294/1814-4861-2019-18-4-13-20.-URL: https://www.siboncoj.ru/jour/article/view/1136. [Novik A.V., Yaremenko E.V., Anokhina E.M., et al. RECIST 1.1 and irRc for response assesment in patients with disseminated cutaneous melanoma treated with ipilimumab or dendritic cell vaccine. Siberian Journal of Oncology. 2019; 18(4): 13-20.-DOI: https://doi.org/10.21294/1814-4861-2019-18-4-13-20.-URL: https://www.siboncoj.ru/jour/article/view/1136. (In Rus)].

Новик А.В. Принципы современной иммунотерапии. Фарматека. 2018; (7(360)): 10-18.-DOI: https://doi.org/10.18565/pharmateca.2018.7.10-18.-URL: https://lib.medvestnik.ru/articles/Principy-sovremennoi-immunoterapii.html. [Novik A.V. Principles of modern immunotherapy. Farmateka. 2018; (7 (360)):10-18.-DOI: https://doi.org/10.18565/pharmateca.2018.7.10-18.-URL: https://lib.medvestnik.ru/articles/Principy-sovremennoi-immunoterapii.html. (In Rus)].

Нехаева Т.Л. Оптимизация аутологичных дендритно-клеточных вакцин для лечения больных злокачественными новообразованиями. Сибирский онкологический журнал. 2013; (3):52-56.-EDN: QYQIUP.-URL: https://elibrary.ru/download/elibrary_20135660_67874276.pdf. [Nehaeva T.L. Autologous dendritic cell vaccine optimization for therapy of patients with disseminated malignant neoplasms. Siberian Journal of Oncology. 2013; (3): 52-56.-EDN: QYQIUP.-URL: https://elibrary.ru/download/elibrary_20135660_67874276.pdf. (In Rus)].

Biobank and register of patients with agresive tumors for translational and analytical research (REGATA). N.N. Petrov National Medical Research Center of Oncology. Clinical Trial Record. Clinicaltrials.gov: National Library of Medicine. 2024; NCT05539677.-URL: https://www.clinicaltrials.gov/study/NCT05539677?term=REGATA&rank=1 (19.06.2024).

Patent 2714208 C1. Балдуева И.А., Данилова А.Б., Нехаева Т.Л., et al. Клеточный продукт для нагрузки и активации дендритных клеток человека. Рос. Фед.: Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова" Министерства здравоохранения Российской Федерации. Priority date 2019-03-05. 2019.-URL: https://www.elibrary.ru/item.asp?id=42480199. [Patent 2714208 C1. Baldueva I.A., Danilova A.B., Nehaeva T.L., et al. Cellular product for loading and activation of human dendritic cells. Ros. Fed.: Federal State Budgetary Institution N.N. Petrov National Medical Research Center of Oncology. Ministry of Health of the Russian Federation. Priority date 2019-03-05. 2019.-URL: https://www.elibrary.ru/item.asp?id=42480199. (In Rus)].

Lehnert B. BlandAltmanLeh: Plots (slightly extended) bland-altman plots. Ed 0.3.1. CRAN: Contributed Packages. The R Foundation. 2015.-DOI: https://doi.org/10.32614/cran.package.blandaltmanleh.-URL: https://CRAN.R-project.org/package=BlandAltmanLeh.

Eisenhauer E.A., Therasse P., Bogaerts J., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer (Oxford, England: 1990). 2009; 45(2): 228-247.-DOI: https://doi.org/10.1016/j.ejca.2008.10.026.

Lamano J.B., Ampie L., Choy W., et al. Immunomonitoring in glioma immunotherapy: current status and future perspectives. J Neurooncol. 2016; 127(1): 1-13.-DOI: https://doi.org/10.1007/s11060-015-2018-4.-URL: https://link.springer.com/content/pdf/10.1007/s11060-015-2018-4.pdf.

Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021; 277: 119627.-DOI: https://doi.org/10.1016/j.lfs.2021.119627.-URL: https://www.sciencedirect.com/science/article/pii/S0024320521006135?via%3Dihub.

Ishikawa E., Muragaki Y., Yamamoto T., et al. Phase I/IIa trial of fractionated radiotherapy, temozolomide, and autologous formalin-fixed tumor vaccine for newly diagnosed glioblastoma. J Neurosurg. 2014; 121(3): 543-553.-DOI: https://doi.org/10.3171/2014.5.Jns132392.-URL: https://thejns.org/abstract/journals/j-neurosurg/121/3/article-p543.xml.

Rangelova E., Kaipe H. Immunotherapy in pancreatic cancer-an emerging role: a narrative review. Chin Clin Oncol. 2022; 11(1): 4.-DOI: https://doi.org/10.21037/cco-21-174.-URL: https://cco.amegroups.org/article/view/90353/html.

Okamoto M., Kobayashi M., Yonemitsu Y., et al. Dendritic cell-based vaccine for pancreatic cancer in Japan. World J Gastrointest Pharmacol Ther. 2016; 7(1): 133-138.-DOI: https://doi.org/10.4292/wjgpt.v7.i1.133.-URL: https://pubmed.ncbi.nlm.nih.gov/26855819/.

Lotem M., Merims S., Frank S., et al. Adjuvant autologous melanoma vaccine for macroscopic stage III disease: survival, biomarkers, and improved response to CTLA-4 blockade. J Immunol Res. 2016; 2016: 8121985.-DOI: https://doi.org/10.1155/2016/8121985.-URL: https://www.ncbi.nlm.nih.gov/pubmed/27294163.

de Vries I.J., Bernsen M.R., Lesterhuis W.J., et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol. 2005; 23(24): 5779-5787.-DOI: https://doi.org/10.1200/jco.2005.06.478.-URL: https://pubmed.ncbi.nlm.nih.gov/16110035/.

Ardon H., Van Gool S., Lopes I.S., et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol. 2010; 99(2): 261-272.-DOI: https://doi.org/10.1007/s11060-010-0131-y.-URL: https://link.springer.com/content/pdf/10.1007/s11060-010-0131-y.pdf.

Fadul C.E., Fisher J.L., Hampton T.H., et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother. 2011; 34(4): 382-389.-DOI: https://doi.org/10.1097/CJI.0b013e318215e300.-URL: https://pubmed.ncbi.nlm.nih.gov/21499132/.

Marriott M., Post B., Chablani L. A comparison of cancer vaccine adjuvants in clinical trials. Cancer Treat Res Commun. 2023; 34: 100667.-DOI: https://doi.org/10.1016/j.ctarc.2022.100667.-URL: https://www.ncbi.nlm.nih.gov/pubmed/36516613.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024