Abstract
Introduction. The efficacy of systemic cytostatic therapy for oncological diseases, including ovarian cancer, is limited by toxic effects on healthy tissues. The development of targeted drug delivery technologies for anticancer agents represents an urgent priority. A promising strategy involves creating innovative delivery systems based on extracellular nanovesicles (ENVs) modified with DNA aptamers.
Aim. To develop a vesicular membrane modification technology using DNA aptamers and evaluate the efficacy of this system for targeted doxorubicin delivery to ovarian cancer cells in vitro.
Materials and Methods. The study utilized ovarian cancer peritoneal metastasis tissue samples (n=3) and Skov-3 and Ovcar-3 cell lines. ENVs were isolated from healthy donor plasma and characterized using nanoparticle tracking analysis (NTA) and flow cytometry. Doxorubicin (DOX) loading was achieved through an optimized sonoporation protocol, followed by purification of DOX-ENV complexes using size-exclusion chromatography. Vesicular surface modification was accomplished via hydrophobic interaction between the membrane and cholesterol-conjugated DNA aptamers. System cytotoxicity was assessed using MTT assay.
Results. Initial candidate aptamer selection was performed through literature analysis and binding affinity assessment to ovarian cancer cells. The vesicular delivery system development in the second stage of the study involved: ENV isolation from donor plasma via ultracentrifugation; doxorubicin loading through sonoporation; purification of DOX-ENV complexes; and surface modification to create DOX-ENV-APT complexes. The optimized system demonstrated significantly enhanced cytotoxicity compared to non-targeted complexes (survival rates: Skov-3: 1% vs 57%; Ovcar-3: 0.03% vs 0.3%).
Conclusion. Aptamer-mediated surface modification significantly enhanced the targeted delivery efficiency of cytostatic drugs to ovarian cancer cells in vitro. DNA aptamer-functionalized extracellular vesicles represent a promising platform for improving the therapeutic index of systemic chemotherapy.
References
Злокачественные новообразования в России в 2022 году (заболеваемость и смертность). Под ред. А.Д. Каприна. В.В. Старинского. А.О. Шахзадовой. И.В. Лисичниковой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2023; 275(илл.). [Malignant tumors in Russia in 2022 (morbidity and mortality). Ed. by Kaprin A.D., Starinskii V.V. Shakhzadova A.O., Lisichnikova I.V. Moscow: P.A. Herzen Moscow State Medical Research Institute - branch of the Federal State Budgetary Institution ‘NMRC of Radiology’ of the Ministry of Health of Russia. 2023; 275(ill.) (In Rus)].
Мерабишвили В.М. Выживаемость онкологических больных. Выпуск второй. Часть 1 . Под ред. проф. Ю.А. Щербука. СПб. 2011; 332.-ISBN: 978-5-91258-176-2. [ Merabishvili V.M. Survival of cancer patients. Issue 2. Part 1. Ed. by Prof. Shcherbuk Yu.A. St Petersburg. 2011; 332.-ISBN: 978-5-91258-176-2 (in Rus)].
Мерабишвили В.М., Бахидзе Е.В., Урманчеева А.Ф., et al. Состояние онкологической помощи в России: рак яичников, распространенность, качество учета, выживаемость больных (клинико-популяционное исследование). Вопросы онкологии. 2025; 71(2): 306–317.-DOI: https://doi.org/10.37469/0507-3758-2025-71-2-306-317. [Merabishvili V.M., Bakhidze E.V., Urmancheeva A.F., et al. Cancer care in Russia: ovarian cancer, prevalence, registration quality, survival (clinical and population study). Voprosy Onkologii = Problems in Oncology. 2025; 71(2): 306-317.-DOI: https://doi.org/10.37469/0507-3758-2025-71-2-306-317 (In Rus)].
Тюляндина А.С., Коломиец Л.А., Морхов К.Ю., et al. Рак яичников, первичный рак брюшины и рак маточных труб. Злокачественные опухоли. 2023; 13(3s2-1): 201-215.-DOI: https://doi.org/10.18027/2224-5057-2023-13-3s2-1-201-215. [Tyulyandina A.S., Kolomiyets L.A., Morhov K.YU., et al. Ovarian cancer, primary peritoneal cancer, and fallopian tube cancer. Malignant Tumors. 2023; 13(3s2-1): 201-215. DOI: https://doi.org/10.18027/2224-5057-2023-13-3s2-1-201-215 (In Rus)].
Wang G., Yang H., Wang Y., Qin J. Ovarian cancer targeted therapy: current landscape and future challenges. Front. Oncol. 2025; 15.-DOI: https://doi.org/10.3389/fonc.2025.1535235.
Саевец В.В., Привалов А.В., Важенин А.В., et al. Роль гипертермической внутрибрюшинной химиотерапии в комбинации с интраперитонеальной порт-системой в лечении пациенток с распространенными формами рака яичников. Опухоли женской репродуктивной системы 2021; 17(4): 66–73.-DOI: https://doi.org/10.17650/1994-4098-2021-17-4-66-73. [Saevets V.V., Privalov A.V., Vazhenin A.V., et al. Role of hyperthermic intraperitoneal chemotherapy in combination with an intraperitoneal port system in the treatment of patients with advanced ovarian cancer. Opukholi Zhenskoy Reproduktivnoy Systemy = Tumors of Female Reproductive System. 2021; 17(4): 66–73.-DOI: https://doi.org/10.17650/1994-4098-2021-17-4-66-73 (In Rus)].
Плевако Д.С., Гаранин А.Ю., Васильева О.А., Малек А.В. Везикулярные cистемы доставки противоопухолевых лекарственных субстанций. Российские нанотехнологии. 2025; 20(3). ( Принята в печать). [Plevako D.S., Garanin A.Yu., Vasilyeva O.A., Malek, A.V. Vesicular delivery systems for antitumor drug substances. Nanotechnology Reports. 2025; 20(3) (in print) (In Rus)].
Takakura Y., Matsumoto A., Takahashi Y. Therapeutic application of small extracellular vesicles (SEVs): pharmaceutical and pharmacokinetic challenges. Biol Pharm Bull. 2020; 43: 576–583.-DOI: https://doi.org/10.1248/bpb.b19-00831.
Feng C., Xiong Z., Wang C., et al Folic acid-modified exosome-PH20 enhances the efficiency of therapy via modulation of the tumor microenvironment and directly inhibits tumor cell metastasis. Bioact Mater. 2021; 6: 963–974.-DOI: https://doi.org/10.1016/j.bioactmat.2020.09.014.
Kim M.S., Haney M.J., Zhao Y., et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomed: Nanotechnol Biol Med. 2018; 14: 195–204.-DOI: https://doi.org/10.1016/j.nano.2017.09.011.
Liu Y., Hinnant B., Chen S., et al. Hyaluronic acid-modified extracellular vesicles for targeted doxorubicin delivery in hepatocellular carcinoma. Exp Cell Res. 2024; 443: 114332.-DOI: https://doi.org/10.1016/j.yexcr.2024.114332.
Choi E.S., Song J., Kang Y.Y., Mok H. Mannose‐modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol Biosci. 2019; 19.-DOI: https://doi.org/10.1002/mabi.201900042.
Jia G., Han Y., An Y., et al. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018; 178: 302–316.-DOI: https://doi.org/10.1016/j.biomaterials.2018.06.029.
Schleif R. DNA LOOPING. Annu Rev Biochem. 1992; 61: 199–223.-DOI: https://doi.org/10.1146/annurev.bi.61.070192.001215.
Irvine D., Tuerk C., Gold L. Selexion: systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J Mol Biol. 1991; 222: 739–761.-DOI: https://doi.org/10.1016/0022-2836(91)90509-5.
Cesarini V., Appleton S.L., de Franciscis V., Catalucci D. The recent blooming of therapeutic aptamers. Mol Aspects Med. 2025; 102: 101350.-DOI: https://doi.org/10.1016/j.mam.2025.101350.
Плевако Д.С., Гаранин А.Ю., Васильева О.А., et al. Сравнительный анализ методов формирования и цитостатической активности везикулярной формы доксорубицина. Российские нанотехнологии. 2025; 20(3) (принята в печать). [Plevako D.S., Garanin A.Yu., Vasilyeva O.A., et al. Comparative analysis of methods of formation and cytostatic activity of the vesicular form of doxorubicin. Nanotechnology Reports. 2025; 20(3) (in print) (In Rus)].
Katsuba K.E., Zabegina L.M., Plevako D.S., et al. Targeting HER2 with DNA aptamers for efficient anticancer drug delivery: A combined experimental and computational study. Bioconjug Chem. 2025; 36: 1180–1196.-DOI: https://doi.org/10.1021/acs.bioconjchem.5c00022.
Yakovlev A.A., Druzhkova T.A., Nikolaev R.V., et al. Elevated levels of serum exosomes in patients with major depressive disorder. Neurochem J. 2019; 13: 385–390.-DOI: https://doi.org/10.1134/S1819712419040044.
Shtam T., Evtushenko V., Samsonov R., et al. Evaluation of immune and chemical precipitation methods for plasma exosome isolation. PLoS One. 2020; 15: e0242732.-DOI: https://doi.org/10.1371/journal.pone.0242732.
Wan Y., Wang L., Zhu C., et al. Aptamer-conjugated extracellular nanovesicles for targeted drug delivery. Cancer Res. 2018; 78: 798–808.-DOI: https://doi.org/10.1158/0008-5472.CAN-17-2880.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025
