Аннотация
Важную роль в экспериментальных исследованиях противоопухолевых соединений играют модели ксеногенных опухолей in vivo. Несмотря на достигнутые в этой области успехи, вероятность того, что новое лекарственное противоопухолевое средство будет одобрено для использования в онкологической клинике, остается невысокой. Такая низкая воспроизводимость экспериментальных результатов в клинике связана с тем, что существующие стандартные модели злокачественных новообразований in vivo, имеют невысокую прогностическую значимость. Тем не менее эксперименты на лабораторных моделях ксеногенных опухолей играли и продолжают играть ключевую роль в апробации и продвижении потенциальных противоопухолевых препаратов в клинику. В данном обзоре представлен анализ отечественной и зарубежной литературы, посвященной созданию и применению ксеногенных моделей in vivo в области экспериментальной онкологии.
Библиографические ссылки
Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022: 252. [Kaprin A.D., Starinsky V.V., Shakhzadova A.O. Malignant neoplasms in Russia in 2021 (morbidity and mortality). Moscow: P. Hertsen MORI – branch of the FSBI NMRRC of the Ministry of Health of Russia. 2022: 252. (In Rus)].
Холоденко Р.М., Холоденко И.В., Доронин И.И. Опухолевые модели в изучении онкологических заболеваний. Иммунология. 2013; 5: 282-286. [Kholodenko R.M., Kholodenko I.V., Doronin I.I. Tumor models in the study of oncological diseases. Immunology. 2013; 5: 282-286. (In Rus)].
Кит О.И., Колесников Е.Н., Максимов А.Ю., и др. Методы создания ортотопических моделей рака пищевода и их применение в доклинических исследованиях. Вопросы онкологии. 2019; 2: 303-7. [Kit O.I., Kolesnikov E.N., Maksimov A.Yu., et al. Methods of creating orthotopic models of esophageal cancer and their application in preclinical studies. Voprosy Onkologii = Problems in Oncology. 2019; 2: 303-7. (In Rus)].
Гуляев В.А., Хубутия М.Ш., Новрузбеков М.С., и др. Ксенотрансплантация: история, проблемы и перспективы развития. Трансплантология. 2019; 11(1): 37-54.-DOI: http://dx.doi.org/10.23873/2074-0506-2019-11-1-37-54. [Gulyaev V.A., Khubutia M.Sh., Novruzbekov M.S., et al. Xenotransplantation: history, problems and development prospects. Transplantologiya = The Russian Journal of Transplantation. 2019; 11(1): 37-54.-DOI: http://dx.doi.org/10.23873/2074-0506-2019-11-1-37-54. (In Rus)].
Cekanova M., Rathore K. Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Devel Ther. 2014; 8: 1911-1921.-DOI: https://doi.org/10.2147/DDDT.S49584.
Khaled W.T., Liu P. Cancer mouse models: past, present and future. Semin Cell Dev Biol. 2014; 27: 54-60.-DOI: https://doi.org/10.1016/j.semcdb.2014.04.003.
Kelland L.R. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer. 2004; 40(6): 827-836.-DOI: https://doi.org/10.1016/j.ejca.2003.11.028.
Lee N.P., Chan C.M., Tung L.N., et al. Tumor xenograft animal models for esophageal squamous cell carcinoma. J Biomed Sci. 2018; 25(1): 66.-DOI: https://doi.org/10.1186/s12929-018-0468-7.
Cho S.Y., Kang W., Han J.Y., et al. An integrative approach to precision Cancer medicine using patient-derived xenografts. Mol Cells. 2016; 39(2): 77-86.-DOI: https://doi.org/10.14348/molcells.2016.2350.
Миндарь М.В., Лукбанова Е.А., Кит С.О., и др. Значение иммунодефицитных мышей для экспериментальных и доклинических исследований в онкологии. Сибирский научный медицинский журнал. 2020; 40(3): 10-20.-DOI: https://doi.org/10.15372/SSMJ20200302. [Mindar M.V., Lukyanova E.A., Kit S.O., et al. The importance of immunodeficient mice for experimental and preclinical studies in oncology. Siberian Scientific Medical Journal. 2020; 40(3): 10-20.-DOI: https://doi.org/10.15372/SSMJ20200302. (In Rus)].
Olson B., Li Y., Lin Y., et al. Mouse models for cancer immunotherapy research. Cancer Discov. 2018; 8(11): 1358-1365.-DOI: https://doi.org/10.1158/2159-8290.
Shackleton M., Fearon ER. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009; 138: 822-829.-DOI: https://doi.org/10.1016/j.cell.2009.08.017.
Zhao X., Li L., Starr T.K., et al. Tumor location impacts immune response in mouse models of colon cancer. Oncotarget. 2017; 8(33): 54775-54787.-DOI: https://doi.org/10.18632/oncotarget.18423.
Ruggeri B.A., Camp F., Miknyoczki S. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol. 2014; 87(1): 150-161.-DOI: https://doi.org/10.1016/j.bcp.2013.06.020.
Nair D.V., Reddy A.G. Laboratory animal models for esophageal cancer. Vet World. 2016; 9(11): 1229-1232.-DOI: https://doi.org/10.14202/vetworld.2016.1229-1232.
Гончарова А.С., Протасова Т.П., Лукбанова Е.А., и др. Разработка метода получения ксеногенной опухолевой модели с использованием пористого металлического скаффолда. Вопросы онкологии. 2021; 67(1): 127-13.-DOI: https://doi.org/10.37469/0507-3758-2021-67-1-127-133. [Goncharova A.S., Protasova T.P., Lukyanova E.A., et al. Development of a method for obtaining a xenogenic tumor model using a porous metal scaffold. Voprosy Onkologii = Problems in Oncology. 2021; 67(1): 127-133.-DOI: https://doi.org/10.37469/0507-3758-2021-67-1-127-133. (In Rus)].
Yan S., Jiang H., Fang S., et al. Microrna-340 inhibits esophageal Cancer cell growth and invasion by targeting phosphoserine aminotransferase 1. Cell Physiol Biochem. 2015; 37(1): 375-386.-DOI: https://doi.org/https://doi.org/10.1159/000430361.
Liu M., Hu Y., Zhang M.F., et al. MMP1 promotes tumor growth and metastasis in esophageal squamous cell carcinoma. Cancer Lett. 2016; 377(1): 97-104.-DOI: https://doi.org/10.1016/j.canlet.2016.04.034.
Yang Q., Wang R., Xiao W., et al. Cellular retinoic acid binding protein 2 is strikingly downregulated in human esophageal squamous cell carcinoma and functions as a tumor suppressor. Plos One. 2016; 11(2): e0148381.-DOI: https://doi.org/10.1371/journal.pone.0148381.
Ip J.C., Ko J.M., Yu V.Z., et al. A versatile orthotopic nude mouse model for study of esophageal squamous cell carcinoma. Biomed Res Int. 2015; 910715.-DOI: https://doi.org/10.1155/2015/910715.
Ng H.Y., Ko J.M., Yu V.Z., et al. DESC1, a novel tumor suppressor, sensitizes cells to apoptosis by downregulating the EGFR/AKT pathway in esophageal squamous cell carcinoma. Int J Cancer. 2016; 138(12): 2940-2951.-DOI: https://doi.org/10.1002/ijc.30034.
Чиж Г.А. Современные возможности прогнозирования метастазирования злокачественных новообразований. Маркеры метастазирования. Forcipe. 2019; 1: 31-41. [Chizh G.A. Modern possibilities of predicting metastasis of malignant neoplasms. Markers of metastasis. Forcipe. 2019; 1: 31-41. (In Rus)].
Даниленко Е.Д., Белкина А.О., Сысоева Г.М. Модели костных метастазов в экспериментальных исследованиях (обзор). Биофармацевтический журнал. 2015; 7(4): 3-13. [Danilenko E.D., Belkina A.O., Sysoeva G.M. Models of bone metastases in experimental studies (review). Biopharmaceutical Journal. 2015; 7(4): 3-13. (In Rus)].
Maciejko L., Smalley M., Goldman A. Cancer immunotherapy and personalized medicine: emerging technologies and biomarker-based approaches. J Mol Biomark Diagn. 2017; 8(5): 350.-DOI: https://doi.org/10.4172/2155-9929.1000350.
Beca F., Polyak K. Intratumor Heterogeneity in Breast Cancer. Adv Exp Med Biol. 2016; 882: 169-189.-DOI: https://doi.org/10.1007/978-3-319-22909-6_7.
Hait W.N. Anticancer drug development: the grand challenges. Nat Rev Drug Discov. 2010;9 (4): 253-254.-DOI: https://doi.org/10.1038/nrd3144.
Thibaudeau L., Taubenberger A.V., Holzapfel B.M., et al. Lissueengineered humanized xenograft model of human breast cancer metastasis to bone. Dis Model Mech. 2015; 7: 299-309.
Abate-Daga D., Lagisetty K.H., Tran E., et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther. 2014; 25(12): 1003-1012.-DOI: https://doi.org/10.1089/hum.2013.209.
Rongvaux A., Willinger T., Martinek J., et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol. 2014; 32(4): 364-72.-DOI: https://doi.org/10.1038/nbt.2858.
Zhao Y., Shuen T.W.H., Toh T.B., et al. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut. 2018; 67(10): 1845-54.-DOI: https://doi.org/10.1136/gutjnl-2017-315201.
Chu Y., Hochberg J., Yahr A., et al. Targeting CD20+ aggressive B-cell non-hodgkin lymphoma by Anti-CD20 CAR mrna-modified expanded natural killer cells in vitro and in NSG Mice. Cancer Immunol Res. 2015; 3(4): 333-44.-DOI: https://doi.org/10.1158/2326-6066.CIR-14-0114.
Smith D.J., Lin L.J., Moon H., et al. Propagating humanized BLT mice for the study of human immunology and immunotherapy. Stem Cells and Development. 2016; 25(24): 1863-1873.
Wege A.K., Ernst W., Eckl S., et al. Humanized tumor mice – a new model to study and manipulate the immune response in advanced cancer therapy. Fnt J Cancer. 2011; 129: 2194-2206.
Nguyen R., Patel A.G., Griffiths L.M., et al. Next-generation humanized patient-derived xenograft mouse model for pre-clinical antibody studies in neuroblastoma. Cancer Immunol Immunother. 2021; 70(3): 721-732.-DOI: https://doi.org/10.1007/s00262-020-02713-6.
Scherer S.D., Riggio A.I., Haroun F., et al. An immune-humanized patient-derived xenograft model of estrogen-independent, hormone receptor positive metastatic breast cancer. Breast Cancer Res. 2021; 30; 23(1):100.-DOI: https://doi.org/10.1186/s13058-021-01476-x.
Beaber E., Buist D., Barlow W., et al. Recent oral contraceptive use by formulationand breast cancer riskamong women 20 to 49 years of age. Cancer Rese arch. 2014; 74(15): 4078-4089.
Гончарова А.С., Шевченко А.Н., Дашкова И.Р., и др. Методологические аспекты создания ксенотрансплантатов опухолей, полученных от пациентов. Казанский медицинский журнал. 2021; 102 (5): 694-702.-DOI: https://doi.org/10.17816/KMJ2021-694. [Goncharova A.S., Shevchenko A.N., Dashkova I.R., et al. Methodological aspects of creating xenografts of tumors obtained from patients. Kazan Medical Journal. 2021; 102 (5): 694-702.-DOI: https://doi.org/10.17816/KMJ2021-694. (In Rus)].
Wang Y., Wang J.X., Xue H., et al. Subrenal capsule grafting technology in human cancer modeling and translational cancer research. Differentiation. 2016; 91(4-5): 15-19.-DOI: https://doi.org/10.1016/j.diff.2015.10.012.
Serna V.A., Kurita T. Patient-derived xenograft model for uterine leiomyoma by sub-renal capsule graf¬ting. J Biol Methods. 2018; 5(2): e91.-DOI: https://doi.org/10.14440/jbm.2018.243.
Larmour L.I., Cousins F.L., Teague J.A., et al. A patient derived xenograft model of cervical cancer and cervical dysplasia. Plos One. 2018; 13(10): e0206539.-DOI: https://doi.org/10.1371/journal.pone.0206539.
Priolo C., Agostini M., Vena N., et al. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am J Pathol. 2010; 176(4): 1901-1913.-DOI: https://doi.org/10.2353/ajpath.2010.090873.
Zhao H., Nolley R., Chen Z., et al. Tissue slice grafts: an in vivo model of human prostate androgen signaling. Am J Pathol. 2010; 177(1): 229-239.-DOI: https://doi.org/10.2353/ajpath.2010.090821.
Qu S., Ci X., Xue H., et al. Treatment with docetaxel in combination with Aneustat leads to potent inhibition of metastasis in a patient-derived xenograft model of advanced prostate cancer. Brit J Cancer. 2018; 118(6): 802-812.-DOI: https://doi.org/10.1038/bjc.2017.474.
Tang S., Yang R., Zhou X., et al. Expression of GOLPH3 in patients with non-small cell lung cancer and xenografts models. Oncology Letters. 2018; 15(5): 7555-7562.-DOI: https://doi.org/10.3892/ol.2018.8340.
Larmour L.I., Cousins F.L., Teague J.A., et al. A patient derived xenograft model of cervical cancer and cervical dysplasia. Plos One. 2018; 13(10): e0206539.-DOI: https://doi.org/10.1371/journal.pone.0206539.
Heo E.J., Cho Y.J., Cho W.C., et al. Patient-derived xenograft models of epithelial ovarian cancer for preclinical studies. Cancer Res. Treat. 2017; 49(4): 915-926.-DOI: https://doi.org/10.4143/crt.2016.322.
Yu D.S., Lee C.F., Chang S.Y. Immunotherapy for orthotopic murine bladder cancer using bacillus Calmette-Guerin recombinant protein Mpt64. J Urol. 2007; 177(2): 738-42.-DOI: https://doi.org/10.1016/j.juro.2006.09.074.
Филоненко Д.В., Андронова Н.В., Трещалина Е.М., и др. Оценка чувствительности к герцептину продкожных ксенографтов рака молочной железы человека SKBR3 при трансплантации иммунодефицитным мышам Balb/c nude разведения ГУ РОНЦ им. Н. Н. Блохина РАМН. Российский биотерапевтический журнал. 2008; 3: 42-48. [Filonenko D.V., Andronova N.V., Treshchalina E.M., et al. Evaluation of sensitivity to herceptin of subcutaneous xenografts of human breast cancer SKBR3 during transplantation to immunodeficient mice Balb/c nude breeding of the N. N. Blokhin State Research Center of the Russian Academy of Medical Sciences. Russian Biotherapeutic Journal. 2008; 3: 42-48. (In Rus)].
Abdolahi S., Ghazvinian Z., Muhammadnejad S., et al. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med. 2022; 20(1): 206.-DOI: https://doi.org/10.1186/s12967-022-03405-8.
Kopetz S., Desai J., Chan E., et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015; 33(34): 4032.-DOI: https://doi.org/10.1200/JCO.2015.63.2497.
Hidalgo M., Amant F., Biankin A.V., et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014; 4(9): 998-1013.-DOI: https://doi.org/10.1158/2159-8290.CD-14-0001.
Byrne A.T., Alférez D.G., Amant F., et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017; 17(4): 254.-DOI: https://doi.org/10.1038/nrc.2016.140.
Marangoni E., Vincent-Salomon A., Auger N., et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 2007; 13(13): 3989-3998.-DOI: https://doi.org/10.1158/1078-0432.CCR-07-0078.
Zhang X., Claerhout S., Prat A., et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Can Res. 2013; 73(15): 4885-4897.-DOI: https://doi.org/10.1158/0008-5472.CAN-12-4081.
Bertotti A., Migliardi G., Galimi F., et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011; 1(6): 508-523.-DOI: https://doi.org/10.1158/2159-8290.CD-11-0109.
Nunes M., Vrignaud P., Vacher S., et al. Evaluating patient-derived colorectal cancer xenografts as preclinical models by comparison with patient clinical data. Can Res. 2015; 75(8): 1560-1566.-DOI: https://doi.org/10.1158/0008-5472.CAN-14-1590.
Kim M.K., Osada T., Barry W.T., et al. Characterization of an oxaliplatin sensitivity predictor in a preclinical murine model of colorectal cancer. Mol Cancer Ther. 2012; 11(7): 1500-1509.-DOI: https://doi.org/10.1158/1535-7163.MCT-11-0937.
Liu Y., Wu W., Cai C., et al. Patient-derived xenograft models in cancer therapy: technologies and applications. Sig Transduct Target Ther. 2023; 8: 160.-DOI: https://doi.org/10.1038/s41392-023-01419-2.
Maru Y., Hippo Y. Current status of patient-derived ovarian cancer models. Cells. 2019; 8(5): 505.-DOI: https://doi.org/10.3390/cells8050505.
Buolamwini J.K. Novel anticancer drug discovery. Curr Opin Chem Biol. 1999; 3(4): 500-9.-DOI: https://doi.org/10.1016/S1367-5931(99)80073-8.
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
© АННМО «Вопросы онкологии», Copyright (c) 2024