Меланома, молекулярно-генетические аспекты этиопатогенеза: соматические и герминальные мутации
Загрузок: 196
Просмотров: 188
pdf

Ключевые слова

меланома
драйверные гены
соматические, герминальные мутации
молекулярные подтипы
обзор

Как цитировать

Казубская, Т. П., Мехеда, Л. В., Трофимов , Е. И., Фомина , Л. Я., Харкевич , Г. Ю., Белышева , Т. С., Козлова , В. М., Сорокина, С. С., & Фридман, М. В. (2023). Меланома, молекулярно-генетические аспекты этиопатогенеза: соматические и герминальные мутации. Вопросы онкологии, 69(1), 30–37. https://doi.org/10.37469/0507-3758-2023-69-1-30-37

Аннотация

Меланома имеет самую высокую мутационную нагрузку среди солидных опухолей. Идентифицировано множество связанных с меланомой соматических и герминальных мутаций в генах, ряд из которых так называемых «драйверных генов», вероятнее всего, включаются в опухолевую прогрессию и являются основными в молекулярной классификации меланомы. В этой части обзора приведен анализ изменений в генах KIT, NF1 RAC1, в зависимости от источника первичной опухоли. Приводятся последние данные о герминальных и соматических мутациях в генах CDKN2A, BAP1, TERT, MITF и др., обнаруженных в меланоме, анализ которых позволяет дополнить знания о причинных механизмах возникновения заболевания.

https://doi.org/10.37469/0507-3758-2023-69-1-30-37
Загрузок: 196
Просмотров: 188
pdf

Библиографические ссылки

Meng D, Carvajal RD. KIT as an oncogenic driver in melanoma: an update on clinical development. Am J Clin Dermatol. 2019;20(3):315-323. doi: 10.1007/s40257-018-0414-1.

Yoshida H, Nishikawa S-I, Okamura H, et al. The role of c-kit proto-oncogene during melanocyte development in mouse. In vivo approach by the in utero microinjection of anti-c kit antibody. Dev Growth Differ. 1993;35:209-20. doi: 10.1111/j.1440-169x.1993.00209.x.

Pham DDM, Guhan S, Tsao H, et al. kit and melanoma: biological insights and clinical implications. Med J. 2020;61(7):562-71. doi: 10.3349/ymj.2020.61.7.562.

Terazawa S, Imokawa G. Signaling cascades activated by UVB in human melanocytes lead to the increased expression of melanocyte receptors, endothelin B receptor and c-KIT. Photochem Photobiol. 2018;94(3):421-431. doi: 10.1111/php.12848.

Slipicevic A, Herlyn M. KIT in melanoma: many shades of gray. J Invest Dermatol. 2015;135 (2):337-8. doi: 10.1038/jid.2014.417.

Gong HZ, Zheng HY, Li J. The clinical significance of KIT mutations in melanoma: a meta-analysis. Melanoma Res. 2018;28(4):259-70. doi: 10.1097/CMR.0000000000000454.

Shen SS, Zhang PS, Eton O, et al. Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol. 2003;30(9):539-47. doi: 10.1034/j.1600-0560.2003.00090.x.

Isabel Zhu Y, Fitzpatrick JE. Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol. 2006;33(1):33-7. doi: 10.1111/j.0303-6987.2006.00420.x.

Dahl C, Abildgaard C, Riber-Hansen R, et al. KIT is a frequent target for epigenetic silencing in cutaneous melanoma. J Invest Dermatol. 2014;135(2):516-24. doi: 10.1038/jid.2014.372.

Beadling C, Ek Jacobson-Dunlop, F Stephen Hodi, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821-8. doi: 10.1158/1078-0432.

Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161(7):1681-96. doi: 10.1016/j.cell.2015.05.044.

Hodi FS, Corless CL, Giobbie-Hurder A, et. al. Imatinib for melanomas harboring mutationally activated or amplified kit arising on mucosal, acral, and chro nically sun-damaged skin. J. Clin. Oncol. 2013;31(26):3182-90. doi: 10.1200/jco.2012.47.7836.

Larribere L, Utikal J. Multiple roles of NF1 in the melanocyte lineage. Pigment Cell Melanoma Res. 2016;29(4):417-25. doi: 10.1111/pcmr.12488.

Nagy Á, Garzuly F, Kálmán B. A neurofibromin-1 gén kóros elváltozásai daganatos betegségekben [Pathogenic alterations within the neurofibromin gene in various cancers (Hung.)]. Magy Onkol. 2017;61(4):327-336.

Cichowski K, Jacks T. NF1 tumor suppressor gene function: narrowing the GAP. Cell. 2001;104(4):593-604. doi: 10.1016/s0092-8674(01)00245-8.

Gottfried ON, Viskochil DH, Couldwell WT. Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus. 2010;28(1):E8. doi: 10.3171/2009.11.FOCUS09221.

Krauthammer M, Kong Y, Bacchiocchi A, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015;47(9):996-1002. doi: 10.1038/ng.3361.

Cirenajwis H, Lauss M, Ekedahl H, et al. NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics. Mol Oncol. 2017;11(4):438-451. doi: 10.1002/1878-0261.12050.

Maertens O, Johnson B, Hollstein P, et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov. 2013;3(3):338-49. doi:10.1158/2159-8290.CD-12-0313.

Ranzani M, Alifrangis C, Perna D, et al. BRAF/NRAS wild-type melanoma, NF1 status and sensitivity to trametinib. Pigment Cell Melanoma Res. 2015;28(1):117-9. doi: 10.1111/pcmr.12316.

Davis MJ, Ha BH, Holman EC, et al. RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci USA. 2013;110(3):912-7. doi: 10.1073/pnas.1220895110.

Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006-14. doi: 10.1038/ng.2359.

Melamed RD, Aydin IT, Rajan GS, et al. Genomic characterization of dysplastic nevi unveils implications for diagnosis of melanoma. J Invest Dermatol. 2017;137(4):905-9. doi: 10.1016/j.jid.2016.11.017.

Mar VJ, Wong SQ, Logan A, et al. Clinical and pathological associations of the activating RAC1 P29S mutation in primary cutaneous melanoma. Pigment Cell Melanoma Res. 2014;27(6):1117-25. doi: 10.1111/pcmr.12295.

Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157-60. doi: 10.1126/science.1208130.

Vu HL, Rosenbaum S, Purwin TJ, et al. RAC1 P29S regulates PD-L1 expression in melanoma. Pigment Cell Melanoma Res. 2015;28(5):590-8. doi: 10.1111/pcmr.12392.

Barrett JH, Taylor JC, Bright C, et al. Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions. Int J Cancer. 2015;136(6):1351-60. doi: 10.1002/ijc.29099.

Helgadottir H, Höiom V, Tuominen R, et al. Germline CDKN2A Mutation Status and Survival in Familial Melanoma Cases. J Natl Cancer Inst. 2016;108(11):djw135. doi: 10.1093/jnci/djw135.

Bishop DT, Demenais F, Iles MM, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009;41(8):920-5. doi: 10.1038/ng.411.

Toussi A, Mans N, Welborn J, et al. Germline mutations predisposing to melanoma. Journal of Cutaneous Pathology. 2020;47(7):606-16. doi: 10.1111/cup.13689.

Battaglia A. The Importance of Multidisciplinary Approach in Early Detection of BAP1 Tumor Predisposition Syndrome: Clinical Management and Risk Assessment. Clin Med Insights Oncol. 2014;8:37-47. doi: 10.4137/CMO. S15239.

Masclef L, Ahmed O, Estavoyer B, et al. Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ. 2021;28(2):606-625. doi: 10.1038/s41418-020-00709-4.

Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175-80. doi: 10.1038/nature22071.

Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363(23):2191-9. doi: 10.1056/NEJMoa1000584.

Horn S, Figl A, Rachakonda PS, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959-61. doi: 10.1126/science.1230062.

Xu L, Li S, Stohr BA. The role of telomere biology in cancer. Annu Rev Pathol: Mechan of Dis. 2013;8(1):49-78. doi: 10.1146/annurev-pathol-020712-164030.

Bell RJ, Rube HT, Xavier-Magalhães A, et al. Understanding TERT promoter mutations: a common path to immortality. Mol Cancer Res. 2016;14(4):315-23. doi: 10.1158/1541-7786.MCR-16-0003.

Griewank KG, Murali R, Puig-Butille JA, et al. TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J Natl Cancer Inst. 2014;106(9):dju246. doi: 10.1093/jnci/ dju246.

Vinagre J, Pinto V, Celestino R, et al. Telomerase promoter mutations in cancer: an emerging molecular biomarker? Virchows Arch. 2014;465(2):119-33. doi: 10.1007/s00428-014-1608-4.

Huang FW, Hodis E, Xu MJ, et al. Highly recurrent TERT promoter mutations in human melanoma. Science 2013;339(6122):957-9. doi: 10.1126/science.1229259.

Egberts F, Bohne AS, Krüger S, et al. Varying Mutational Alterations in Multiple Primary Melanomas. J Mol Diagn. 2016;18(1):75-83. doi: 10.1016/j.jmoldx.2015.07.010.

Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev. 2019;33(15-16):983-1007. doi: 10.1101/gad.324657.119.

Maubec E, Chaudru V, Mohamdi H, et al. Characteristics of the coexistence of melanoma and renal cell carcinoma. Cancer. 2010;116(24):5716-24. doi: 10.1002/cncr.25562.

Bertolotto C, Lesueur F, Giuliano S, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011;480(7375):94-8. doi: 10.1038/nature 10539.

Aguissa-Toure´ AH, Li G. Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci. 2011;69(9):1475-91. doi:10.1007/s00018-011-0878-0.

Akbani R, Akdemir KC, Aksoy BA, et al. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161(7):1681-96. doi: 10.1016/j.cell.2015.05.044.

Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251-63. doi: 10.1016/j.cell.2012.06.024.

Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175-180. doi: 10.1038/nature22071.

Halaban R. RAC1 and melanoma. Clin Ther. 2015;37(3):682-5. doi: 10.1016/j.clinthera.2014.10.027.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2023