Molecular and genetic aspects of pathogenesis: somatic & germline mutations
##article.numberofdownloads## 189
##article.numberofviews## 178
pdf (Русский)

Keywords

melanoma
driver genes
somatic, germline mutations
molecular subtypes
review

How to Cite

Kazubskaia , T. P., Mekheda, L., Trofimov , E. I., Fomina , L. Y., Kharkevich , G. I., Belysheva, T. S., Kozlova , V. M., Sorokina , S. S., & Fridman , M. V. (2023). Molecular and genetic aspects of pathogenesis: somatic & germline mutations. Voprosy Onkologii, 69(1), 30–37. https://doi.org/10.37469/0507-3758-2023-69-1-30-37

Abstract

Melanoma has the highest mutation load among all solid tumors. Multiple somatic and germinal mutations associated with melanoma have been identified in various genes. Tumor progression is likely to include a number of so-called ‘driver genes’. The molecular classification of melanoma is largely based on these genes. This part of the review analyzes the changes in the KIT, NF1 RAC1 genes, according to the source of the primary tumor. The study provides the latest data on germinal and somatic mutations in CDKN2A, BAP1, TERT, MITF genes, and on other variants found in melanomas. The analysis allows to cover some gaps in understanding of causal mechanisms of the disease.

https://doi.org/10.37469/0507-3758-2023-69-1-30-37
##article.numberofdownloads## 189
##article.numberofviews## 178
pdf (Русский)

References

Meng D, Carvajal RD. KIT as an oncogenic driver in melanoma: an update on clinical development. Am J Clin Dermatol. 2019;20(3):315-323. doi: 10.1007/s40257-018-0414-1.

Yoshida H, Nishikawa S-I, Okamura H, et al. The role of c-kit proto-oncogene during melanocyte development in mouse. In vivo approach by the in utero microinjection of anti-c kit antibody. Dev Growth Differ. 1993;35:209-20. doi: 10.1111/j.1440-169x.1993.00209.x.

Pham DDM, Guhan S, Tsao H, et al. kit and melanoma: biological insights and clinical implications. Med J. 2020;61(7):562-71. doi: 10.3349/ymj.2020.61.7.562.

Terazawa S, Imokawa G. Signaling cascades activated by UVB in human melanocytes lead to the increased expression of melanocyte receptors, endothelin B receptor and c-KIT. Photochem Photobiol. 2018;94(3):421-431. doi: 10.1111/php.12848.

Slipicevic A, Herlyn M. KIT in melanoma: many shades of gray. J Invest Dermatol. 2015;135 (2):337-8. doi: 10.1038/jid.2014.417.

Gong HZ, Zheng HY, Li J. The clinical significance of KIT mutations in melanoma: a meta-analysis. Melanoma Res. 2018;28(4):259-70. doi: 10.1097/CMR.0000000000000454.

Shen SS, Zhang PS, Eton O, et al. Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol. 2003;30(9):539-47. doi: 10.1034/j.1600-0560.2003.00090.x.

Isabel Zhu Y, Fitzpatrick JE. Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol. 2006;33(1):33-7. doi: 10.1111/j.0303-6987.2006.00420.x.

Dahl C, Abildgaard C, Riber-Hansen R, et al. KIT is a frequent target for epigenetic silencing in cutaneous melanoma. J Invest Dermatol. 2014;135(2):516-24. doi: 10.1038/jid.2014.372.

Beadling C, Ek Jacobson-Dunlop, F Stephen Hodi, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821-8. doi: 10.1158/1078-0432.

Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161(7):1681-96. doi: 10.1016/j.cell.2015.05.044.

Hodi FS, Corless CL, Giobbie-Hurder A, et. al. Imatinib for melanomas harboring mutationally activated or amplified kit arising on mucosal, acral, and chro nically sun-damaged skin. J. Clin. Oncol. 2013;31(26):3182-90. doi: 10.1200/jco.2012.47.7836.

Larribere L, Utikal J. Multiple roles of NF1 in the melanocyte lineage. Pigment Cell Melanoma Res. 2016;29(4):417-25. doi: 10.1111/pcmr.12488.

Nagy Á, Garzuly F, Kálmán B. A neurofibromin-1 gén kóros elváltozásai daganatos betegségekben [Pathogenic alterations within the neurofibromin gene in various cancers (Hung.)]. Magy Onkol. 2017;61(4):327-336.

Cichowski K, Jacks T. NF1 tumor suppressor gene function: narrowing the GAP. Cell. 2001;104(4):593-604. doi: 10.1016/s0092-8674(01)00245-8.

Gottfried ON, Viskochil DH, Couldwell WT. Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus. 2010;28(1):E8. doi: 10.3171/2009.11.FOCUS09221.

Krauthammer M, Kong Y, Bacchiocchi A, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015;47(9):996-1002. doi: 10.1038/ng.3361.

Cirenajwis H, Lauss M, Ekedahl H, et al. NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics. Mol Oncol. 2017;11(4):438-451. doi: 10.1002/1878-0261.12050.

Maertens O, Johnson B, Hollstein P, et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov. 2013;3(3):338-49. doi:10.1158/2159-8290.CD-12-0313.

Ranzani M, Alifrangis C, Perna D, et al. BRAF/NRAS wild-type melanoma, NF1 status and sensitivity to trametinib. Pigment Cell Melanoma Res. 2015;28(1):117-9. doi: 10.1111/pcmr.12316.

Davis MJ, Ha BH, Holman EC, et al. RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci USA. 2013;110(3):912-7. doi: 10.1073/pnas.1220895110.

Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006-14. doi: 10.1038/ng.2359.

Melamed RD, Aydin IT, Rajan GS, et al. Genomic characterization of dysplastic nevi unveils implications for diagnosis of melanoma. J Invest Dermatol. 2017;137(4):905-9. doi: 10.1016/j.jid.2016.11.017.

Mar VJ, Wong SQ, Logan A, et al. Clinical and pathological associations of the activating RAC1 P29S mutation in primary cutaneous melanoma. Pigment Cell Melanoma Res. 2014;27(6):1117-25. doi: 10.1111/pcmr.12295.

Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157-60. doi: 10.1126/science.1208130.

Vu HL, Rosenbaum S, Purwin TJ, et al. RAC1 P29S regulates PD-L1 expression in melanoma. Pigment Cell Melanoma Res. 2015;28(5):590-8. doi: 10.1111/pcmr.12392.

Barrett JH, Taylor JC, Bright C, et al. Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions. Int J Cancer. 2015;136(6):1351-60. doi: 10.1002/ijc.29099.

Helgadottir H, Höiom V, Tuominen R, et al. Germline CDKN2A Mutation Status and Survival in Familial Melanoma Cases. J Natl Cancer Inst. 2016;108(11):djw135. doi: 10.1093/jnci/djw135.

Bishop DT, Demenais F, Iles MM, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009;41(8):920-5. doi: 10.1038/ng.411.

Toussi A, Mans N, Welborn J, et al. Germline mutations predisposing to melanoma. Journal of Cutaneous Pathology. 2020;47(7):606-16. doi: 10.1111/cup.13689.

Battaglia A. The Importance of Multidisciplinary Approach in Early Detection of BAP1 Tumor Predisposition Syndrome: Clinical Management and Risk Assessment. Clin Med Insights Oncol. 2014;8:37-47. doi: 10.4137/CMO. S15239.

Masclef L, Ahmed O, Estavoyer B, et al. Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ. 2021;28(2):606-625. doi: 10.1038/s41418-020-00709-4.

Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175-80. doi: 10.1038/nature22071.

Van Raamsdonk CD, Griewank KG, Crosby MB, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363(23):2191-9. doi: 10.1056/NEJMoa1000584.

Horn S, Figl A, Rachakonda PS, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959-61. doi: 10.1126/science.1230062.

Xu L, Li S, Stohr BA. The role of telomere biology in cancer. Annu Rev Pathol: Mechan of Dis. 2013;8(1):49-78. doi: 10.1146/annurev-pathol-020712-164030.

Bell RJ, Rube HT, Xavier-Magalhães A, et al. Understanding TERT promoter mutations: a common path to immortality. Mol Cancer Res. 2016;14(4):315-23. doi: 10.1158/1541-7786.MCR-16-0003.

Griewank KG, Murali R, Puig-Butille JA, et al. TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J Natl Cancer Inst. 2014;106(9):dju246. doi: 10.1093/jnci/ dju246.

Vinagre J, Pinto V, Celestino R, et al. Telomerase promoter mutations in cancer: an emerging molecular biomarker? Virchows Arch. 2014;465(2):119-33. doi: 10.1007/s00428-014-1608-4.

Huang FW, Hodis E, Xu MJ, et al. Highly recurrent TERT promoter mutations in human melanoma. Science 2013;339(6122):957-9. doi: 10.1126/science.1229259.

Egberts F, Bohne AS, Krüger S, et al. Varying Mutational Alterations in Multiple Primary Melanomas. J Mol Diagn. 2016;18(1):75-83. doi: 10.1016/j.jmoldx.2015.07.010.

Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev. 2019;33(15-16):983-1007. doi: 10.1101/gad.324657.119.

Maubec E, Chaudru V, Mohamdi H, et al. Characteristics of the coexistence of melanoma and renal cell carcinoma. Cancer. 2010;116(24):5716-24. doi: 10.1002/cncr.25562.

Bertolotto C, Lesueur F, Giuliano S, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011;480(7375):94-8. doi: 10.1038/nature 10539.

Aguissa-Toure´ AH, Li G. Genetic alterations of PTEN in human melanoma. Cell Mol Life Sci. 2011;69(9):1475-91. doi:10.1007/s00018-011-0878-0.

Akbani R, Akdemir KC, Aksoy BA, et al. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161(7):1681-96. doi: 10.1016/j.cell.2015.05.044.

Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251-63. doi: 10.1016/j.cell.2012.06.024.

Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175-180. doi: 10.1038/nature22071.

Halaban R. RAC1 and melanoma. Clin Ther. 2015;37(3):682-5. doi: 10.1016/j.clinthera.2014.10.027.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023