Патогенетические механизмы взаимосвязи хронической обструктивной болезни легких и рака легкого
pdf

Ключевые слова

обзор
рак легкого
хроническая обструктивная болезнь легких
патобиологические процессы

Как цитировать

Шугинова, Т. Н., Симакова, М. А., Моисеенко, Ф. В., & Шапорова, Н. Л. (2023). Патогенетические механизмы взаимосвязи хронической обструктивной болезни легких и рака легкого. Вопросы онкологии, 69(5), 835–843. https://doi.org/10.37469/0507-3758-2023-69-5-835-843

Аннотация

Рак легкого и хроническая обструктивная болезнь легких являются самыми распространенными причинами смерти пациентов во всем мире. В основе этиологии этих болезней лежат изменения альвеолоцитов и других клеток, выстилающих поверхность легочного дерева, возникающие на фоне хронического взаимодействия с никотином и продуктами горения табака. Персистирующее воспаление в условиях нарушенных репаративных процессов, а также изменения на уровне эпигенетических процессов регуляции работы генома реализуются в структурно-функциональных изменениях легких. Исследования общегеномных ассоциаций среди пациентов с хронической обструктивной болезнью легких и раком легкого, направленные на поиск генов-кандидатов развития этих полигенных заболеваний выявили общие локусы однонуклеотидных полиморфизмов холинергических рецепторов никотиновой альфа-субъединицы CHRNA3 и CHRNA5 и области в 4q31, 4q24 и 5q, что доказывает общность данных патологий. Эти данные подчеркивают важность расширения исследований, посвященных проблемам взаимосвязи и ассоциации рака легкого и хронической обструктивной болезни легких.

https://doi.org/10.37469/0507-3758-2023-69-5-835-843
pdf

Библиографические ссылки

GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020;8(6):585-596. https://doi.org/10.1016/S2213-2600(20)30105-3.

Авдеев С.Н. Хроническая обструктивная болезнь легких: обострения. Пульмонология. 2013;3:5-19 [Avdeev SN. Acute exacerbation of chronic obstructive pulmonary disease. Russian Pulmonology. 2013;(3):5-19 (In Russ.)]. https://doi.org/10.18093/0869-0189-2013-0-3-5-19.

Çolak Y, Afzal S, Nordestgaard BG, et al. Importance of early COPD in young adults for development of clinical COPD: Findings from the Copenhagen General Population Study. Am J Respir Crit Care Med. 2021;203(10):1245-1256. https://doi.org/10.1164/rccm.202003-0532OC.

Айсанов З.Р., Чучалин А.Г., Калманова Е.Н. Хроническая обструктивная болезнь легких и сердечно-сосудистая коморбидность. Кардиология. 2019;59(8S):24-36 [Aisanov ZR, Chuchalin AG, Kalmanova EN. Chronic obstructive pulmonary disease and cardiovascular comorbidity. Kardiologiia. 2019;59(8S):24-36 (In Russ.)]. https://doi.org/10.18087/cardio.2572.

Flenley DC. Chronic obstructive pulmonary disease. Dis Mon. 1988;34(9):537-99. https://doi.org/10.1016/0011-5029(88)90015-6.

Kim V, Crapo J, Zhao H, et al. Comparison between an alternative and the classic definition of chronic bronchitis in COPDGene. Ann Am Thorac Soc. 2015;12(3):332-9. https://doi.org/10.1513/AnnalsATS.201411-518OC.

Хроническая обструктивная болезнь легких: клинические рекомендации, 2021. Министерство здравоохранения РФ [официальный сайт]. [Chronic obstructive pulmonary disease: clinical guidelines [Internet]. Ministry of Health of the Russian Federation (In Russ.)]. Available from: https://cr.minzdrav.gov.ru/recomend/603_2.

Global Initiative for Asthma [Internet]. Global Strategy for Asthma Management and Prevention. 2019;119-128. Available from: www.ginasthma.org.

Kim WD. Phenotype of chronic obstructive pulmonary disease based on computed tomography-defined underlying pathology. Tuberc Respir Dis (Seoul). 2022;85(4):302-312. https://doi.org/10.4046/trd.2022.0029.

Lim JU, Kim EK, Lim SY, et al. Mixed phenotype of emphysema and airway wall thickening is associated with frequent exacerbation in chronic obstructive pulmonary disease patients. Int J Chron Obstruct Pulmon Dis. 2019;14:3035-3042. https://doi.org/10.2147/COPD.S227377.

Koskela J, Kilpeläinen M, Kupiainen H, et al. Co-morbidities are the key nominators of the health related quality of life in mild and moderate COPD. BMC Pulm Med. 2014;14:102. https://doi.org/10.1186/1471-2466-14-102.

Mirza S, Benzo R. Chronic obstructive pulmonary disease phenotypes: implications for care. Mayo Clin Proc. 2017;92(7):1104-1112. https://doi.org/10.1016/j.mayocp.2017.03.020.

Lahousse L, Ziere G, Verlinden VJ, et al. Risk of frailty in elderly with COPD: A population-based study. J Gerontol A Biol Sci Med Sci. 2016;71(5):689-95. https://doi.org/10.1093/gerona/glv154.

Mittal N, Raj R, Islam EA, et al. The frequency of frailty in ambulatory patients with chronic lung diseases. J Prim Care Community Health. 2016;7(1):10-5. https://doi.org/10.1177/2150131915603202.

Laurin C, Moullec G, Bacon SL, et al. Impact of anxiety and depression on chronic obstructive pulmonary disease exacerbation risk. Am J Respir Crit Care Med. 2012;185(9):918-23. https://doi.org/10.1164/rccm.201105-0939PP.

Rossi A, Butorac-Petanjek B, Chilosi M, et al. Chronic obstructive pulmonary disease with mild airflow limitation: current knowledge and proposal for future research - a consensus document from six scientific societies. Int J Chron Obstruct Pulmon Dis. 2017;12:2593-2610. https://doi.org/10.2147/COPD.S132236.

Каприн А.Д. Состояние онкологической помощи населению России в 2017 г. Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России, 2018 [Kaprin AD. The state of cancer care in Russia in 2017. AD Kaprin, VV Starinskij, GV Petrova, eds. Moscow: FSBI P. Herzen Moscow Oncology Research Institute of the Ministry of Health of Russia. 2018 (In Russ.)].

Ang L, Ghosh P, Seow WJ. Association between previous lung diseases and lung cancer risk: a systematic review and meta-analysis. Carcinogenesis. 2021;42(12):1461-1474. https://doi.org/10.1093/carcin/bgab082.

Wang W, Dou S, Dong W, et al. Impact of COPD on prognosis of lung cancer: from a perspective on disease heterogeneity. Int J Chron Obstruct Pulmon Dis. 2018;13:3767-3776. https://doi.org/10.2147/COPD.S168048.

Tubío-Pérez RA, Torres-Durán M, Pérez-Ríos M, et al. Lung emphysema and lung cancer: what do we know about it? Ann Transl Med. 2020;8(21):1471. https://doi.org/10.21037/atm-20-1180.

Amundson WH, Swanson EJ, Petersen A, et al. Quantification of perinodular emphysema in high-risk patients offers no benefit in lung nodule risk-stratification of malignancy potential. J Thorac Imaging. 2020;35(2):108-114. https://doi.org/10.1097/RTI.0000000000000465.

Wilson DO, Weissfeld JL, Balkan A, et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med. 2008;178(7):738-44. https://doi.org/10.1164/rccm.200803-435OC.

Theodorakopoulou MP, Alexandrou ME, Bakaloudi DR, et al. Endothelial dysfunction in COPD: a systematic review and meta-analysis of studies using different functional assessment methods. ERJ Open Res. 2021;7(2):00983-2020. https://doi.org/10.1183/23120541.00983-2020.

Kadara H, Scheet P, Wistuba II. Early events in the molecular pathogenesis of lung cancer. Cancer Prev Res (Phila). 2016;9(7):518-27. https://doi.org/10.1158/1940-6207.CAPR-15-0400.

Durham AL, Adcock IM. The relationship between COPD and lung cancer. Lung Cancer. 2015;90(2):121-7. https://doi.org/10.1016/j.lungcan.2015.08.017.

Proctor RN. The history of the discovery of the cigarette-lung cancer link: evidentiary traditions, corporate denial, global toll. Tob Control. 2012;21(2):87-91. https://doi.org/10.1136/tobaccocontrol-2011-050338.

Oh JY, Sin DD. Lung inflammation in COPD: why does it matter? F1000 Med Rep. 2012;4:23. https://doi.org/10.3410/M4-23.

Raviv S, Hawkins KA, DeCamp MM Jr, et al. Lung cancer in chronic obstructive pulmonary disease: enhancing surgical options and outcomes. Am J Respir Crit Care Med. 2011;183(9):1138-46. https://doi.org/10.1164/rccm.201008-1274CI.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. https://doi.org/10.1016/j.cell.2011.02.013.

Szebeni GJ, Vizler C, Kitajka K, et al. Inflammation and cancer: extra- and intracellular determinants of tumor-associated macrophages as tumor promoters. Mediators Inflamm. 2017;2017:9294018. https://doi.org/10.1155/2017/9294018.

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565-70. https://doi.org/10.1126/science.1203486.

Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329-60. https://doi.org/10.1146/annurev.immunol.22.012703.104803.

Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107-11. https://doi.org/10.1038/35074122.

Шугинова Т.Н., Мелдо А.А., Шапорова Н.Л. и др. Особенности функции внешнего дыхания у пациентов с хронической обструктивной болезнью легких в сочетании с немелкоклеточным раком легкого. Терапия №8, 2021 [Shuginova TN, Meldo AA, Shaporova NL, et al. Pulmonary function test for chronic obstructive pulmonary disease patients with non-small cell lung cancer. (In Russ.)]. https://dx.doi.org/10.18565/therapy.2021.8.46-53.

Turner MC, Chen Y, Krewski D, et al. Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med. 2007;176(3):285-90. https://doi.org/10.1164/rccm.200612-1792OC.

Ingebrigtsen T, Thomsen SF, Vestbo J, et al. Genetic influences on Chronic Obstructive Pulmonary Disease - a twin study. Respir Med. 2010;104(12):1890-5. https://doi.org/10.1016/j.rmed.2010.05.004.

Zhou JJ, Cho MH, Castaldi PJ, et al. Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am J Respir Crit Care Med. 2013;188(8):941-7. https://doi.org/10.1164/rccm.201302-0263OC.

Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421. https://doi.org/10.1371/journal.pgen.1000421.

Wilk JB, Chen TH, Gottlieb DJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 2009;5(3):e1000429. https://doi.org/10.1371/journal.pgen.1000429.

Cho MH, Boutaoui N, Klanderman BJ, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet. 2010;42(3):200-2. https://doi.org/10.1038/ng.535.

Cho MH, Castaldi PJ, Wan ES, et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet. 2012;21(4):947-57. https://doi.org/10.1093/hmg/ddr524.

Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet. 2005;365(9478):2225-36. https://doi.org/10.1016/S0140-6736(05)66781-5.

Bailey-Wilson JE, Amos CI, et al. A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet. 2004;75(3):460-74. https://doi.org/10.1086/423857.

Lo Iacono M, Monica V, Saviozzi S, et al. p63 and p73 isoform expression in non-small cell lung cancer and corresponding morphological normal lung tissue. J Thorac Oncol. 2011;6(3):473-81. https://doi.org/10.1097/JTO.0b013e31820b86b0.

Bechtel JJ, Kelley WA, Coons TA, et al. Lung cancer detection in patients with airflow obstruction identified in a primary care outpatient practice. Chest. 2005;127(4):1140-5. https://doi.org/10.1378/chest.127.4.1140.

Amos CI, Wu X, Broderick P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40(5):616-22. https://doi.org/10.1038/ng.109.

Hancock DB, Eijgelsheim M, Wilk JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):45-52. https://doi.org/10.1038/ng.500.

Wang X, Li W, Huang K,et al. Genetic variants in ADAM33 are associated with airway inflammation and lung function in COPD. BMC Pulm Med. 2014;14:173. https://doi.org/10.1186/1471-2466-14-173.

Sakornsakolpat P, Prokopenko D, Lamontagne M, et al.; SpiroMeta consortium; international COPD Genetics Consortium. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet. 2019;51(3):494-505. https://doi.org/10.1038/s41588-018-0342-2.

Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233-45. https://doi.org/10.1038/nrc3477.

Chen J, Li X, Huang C, et al. change of serum inflammatory cytokines levels in patients with chronic obstructive pulmonary disease, pneumonia and lung cancer. Technol Cancer Res Treat. 2020;19:1533033820951807. https://doi.org/10.1177/1533033820951807.

Jungnickel C, Schmidt LH, Bittigkoffer L, et al. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth. Oncogene. 2017;36(29):4182-4190. https://doi.org/10.1038/onc.2017.28.

de-Torres JP, Wilson DO, Sanchez-Salcedo P, et al. Lung cancer in patients with chronic obstructive pulmonary disease. Development and validation of the COPD Lung Cancer Screening Score. Am J Respir Crit Care Med. 2015;191(3):285-91. https://doi.org/10.1164/rccm.201407-1210OC.

Gomes M, Teixeira AL, Coelho A, et al. The role of inflammation in lung cancer. Adv Exp Med Biol. 2014;816:1-23. https://doi.org/10.1007/978-3-0348-0837-8_1.

Moro L, Pedone C, Scarlata S, et al. Endothelial dysfunction in chronic obstructive pulmonary disease. Angiology. 2008;59(3):357-64. https://doi.org/10.1177/0003319707306141.

Zhang WM, Zhou J, Ye QJ. Endothelin-1 enhances proliferation of lung cancer cells by increasing intracellular free Ca2+. Life Sci. 2008;82(13-14):764-71. https://doi.org/10.1016/j.lfs.2008.01.008.

Kobayashi H, Boelte KC, Lin PC. Endothelial cell adhesion molecules and cancer progression. Curr Med Chem. 2007;14(4):377-86. https://doi.org/10.2174/092986707779941032.

Elangbam CS, Qualls CW, Dahlgren RR. Cell adhesion molecules--update. Vet Pathol. 1997;34(1):61-73. https://doi.org/10.1177/030098589703400113.

Bai X, Guo ZQ, Zhang YP, et al. CDK4/6 inhibition triggers ICAM1-driven immune response and sensitizes LKB1 mutant lung cancer to immunotherapy. Nat Commun. 2023;14(1):1247. https://doi.org/10.1038/s41467-023-36892-4.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2023