Аннотация
Рак толстого кишечника в течение долгого времени остается важной и актуальной проблемой в области онкологии. Значимым аспектом для понимания молекулярных закономерностей развития этого заболевания и разработки новых противоопухолевых препаратов являются исследования, выполненные на животных моделях. Такие модели представляют собой наиболее адекватный инструмент для оценки стратегии лечения рака и ресурс с огромным потенциалом для изучения механизмов туморогенеза. В статье проанализированы данные последних нескольких лет о методах моделирования процесса развития злокачественных опухолей кишечника человека на иммунодефицитных животных, рассмотрены преимущества и недостатки различных вариантов моделей.Библиографические ссылки
Идиятуллина Э.Т., Павлов В.Н., Yuan Y, Cai B. Современные представления о лечении колоректального рака с метастазами // Медицинский вестник Башкортостана. - 2017. - Т. 12. - № 5. - С. 124-127
Кит О.И. Проблема колоректального рака в начале XXI века: достижения и перспективы // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. - 2013. - Т 23. - №. 3. - С. 65-71
Федоров В.Э., Поделякин К.А. Эпидемиологические аспекты колоректального рака // Медицинский альманах. - 2017. - №. 4. - С. 145-148
Трещалина Е.М. Иммунодефицитные мыши Balb/c Nude и моделирование различных вариантов опухолевого роста для доклинических исследований // Российский биотерапевтический журнал. - 2017. - Т 16. - № 3. - С. 6-13
Холоденко Р.В., Доронин И.И., Холоденко И.В. Опухолевые модели в изучении онкологических заболеваний // Иммунология. - 2013. - Т. 34. - №. 5. - С. 282286
Хромова Н.В., Копнин П.Б., Копнин Б.П. Стимуляция гемангиогенеза, лимфангиогенеза и васкулогенной мимикрии при различных нарушениях функции опухолевого супрессора р53 в ксенографтах рака ободочной кишки // Онкологическая колопроктология. - 2011. -№. 2. - С. 37-43
Scholz C.C., Berger D.P., Winterhalter B.R. et al. Correlation of drug response in patients and in the clonogenic assay with solid human tumor xenografts. Eur. J. Cancer. 1990; 26: 901-905. (90)90196-Z. DOI: 10.1016/0277-5379
Bhullar J.S., Makarawo T., Subhas G. et al. A true orthotopic gastric cancer murine model using electrocoagulation. J Am Coll Surg. 2013; 217: 64-70. DOI: 10.1016/j.jamcollsurg.2013.01.062
Johnson J.I., Decker S., Zaharevitz D. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001; 84: 1424-1431. DOI: 10.1054/bjoc.2001.1796
Miller S., Senior P.V., Prakash M.V. et al. Leukocyte populations and IL-6 in the tumor microenvironment of an orthotopic colorectal cancer model Acta Biochim Biophys Sin (Shanghai). 2016; 48(4): 334-341. gmw002. DOI: 10.1093/abbs/
Donelli M.G., Rosso R., Garattini S. Selective chemotherapy in relation to the site of tumor transplantation. Int. J. Cancer. 1967; 2: 421-424. DOI: 10.1002/ijc.2910020503
Wilmanns C., Fan D., O’Brian C. et al. Modulation of doxorubicin sensitivity and level of P-glycoprotein expression in human colon carcinoma cells by ectopic and orthotopic environments in nude mice. Int. J. Oncol. 1993; 3: 413-422. DOI: 10.3892/ijo.3.3.413
Porru M., Artuso S., Salvati E. et al. Targeting G-Quadru-plex DNA structures by EMICORON has a strong antitumor efficacy against advanced models of human colon cancer. Mol Cancer Ther. 2015; 14(11): 2541-2551. DOI: 10.1158/1535-7163
Evans J.P., Winiarski B.K., Sutton P.A. et al. The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer Oncotarget. 2018; 9(43): 27104-27116. DOI: 10.18632/oncotarget.25497
Hite N., Klinger A., Hellmers L. et al. An optimal orthotopic mouse model for human colorectal cancer primary tumor growth and spontaneous metastasis. dis colon rectum. 2018; 61(6): 698-705. DOI: 10.1097/DCR.0000000000001096
Liao H.-W., Hung M.-C. Intracaecal orthotopic colorectal cancer xenograft mouse model. Bio Protoc. 2017; 7(11): DOI: 10.21769/BioProtoc.2311
Talmadge J.E., Singh R.K., Fidler I.J., Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. The American Journal of Pathology. 2007; 170(3): 793-804. DOI: 10.2353/ajpath.2007.060929
Costa M.J., Kudaravalli J., Liu W.H. et al. A mouse model for evaluation of efficacy and concomitant toxicity of anti-human CXCR4 therapeutics. PLoS One. 2018; 13(3):e0194688. DOI: 10.1371/journal.pone.0194688
Palucka A.K., Coussens L.M. The basis of oncoimmu-nology. Cell. 2016; 164:1233-1247. 10.1016/j. Cell.2016.01.049. DOI: 10.1016/j.cell.2016.01.049
Fesnak A.D., June C.H., Levine B.L. Engineered T-cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016; 16:566-581. DOI: 10.1038/nrc.2016.97
Zhao X., Li L., Starr T.K., Subramanian S. Tumor location impacts immune response in mouse models of colon cancer. Oncotarget, 2017; 8(33): 54775-54787. DOI: 10.18632/oncotarget.18423
Wege A.K. Humanized mouse models for the preclinical assessment of cancer immunotherapy. BioDrugs. 2018; 32(3): 245-266. DOI: 10.1007/s40259-018-0275-4
Mukohyama J., Shimono X., Yamashita K., et al. Effect of xenotransplantation site on MicroRNA expression of human colon cancer stem cells. Anticancer Res. 2016; 36(7):3679-86.
Lal N., White B.S., Goussous G. et al. Are Independently associated with reduced immune infiltration and reactivity in colorectal cancer. Clin Cancer Res. 2018; 24(1): 224-233. DOI: 10.1158/1078-0432.CCR-17-1090
Metildi C.A., Kaushal S., Snyder C.S. et al. Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model J Surg Res. 2013; 179(1): 87-93. DOI: 10.1016/j.jss.2012.08.052
Priolli D.G., Abrantes A.M., Neves S. et al. A novel model of distal colon cancer in athymic mice.Acta Cir Bras. 2012; 27: 355-360. DOI: 10.1590/S0102-86502012000600001
Wang J., Chen C., Wang S. et al. Bufalin Inhibits HCT116 colon cancer cells and its orthotopic xenograft tumor in mice model through genes related to apoptotic and PTEN/AKT pathways. Gastroenterol. Res. Pract. 2015; 457193. DOI: 10.1155/2015/457193
Bhullar J.S., Subhas G., Silberberg B. et al. A novel nonoperative orthotopic colorectal cancer murine model using electrocoagulation. J Am Coll Surg 2011; 213: 54-60; discussion 60-61. DOI: 10.1016/j.jamcollsurg.2011.02.022
Park J.Y., Murakami T., Lee J.Y. et al. Fluorescent-antibody targeting of insulin-like growth factor-1 receptor visualizes metastatic human colon cancer in orthotopic mouse models. PLoS One. 2016; 11(1): DOI: 10.1371/journal.pone.0146504
Mittal V.K., Bhullar J.S., Jayant K. Animal models of human colorectal cancer: Current status, uses and limitations. World Journal Gastroenterology. 2015; 21(41): 1185411861. DOI: 10.3748/wjg.v21.i41.11854
Fu X.Y., Besterman J.M., Monosov A., Hoffman R.M. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proc Natl Acad Sci USA. 1991; 88: 93459349. DOI: 10.1073/pnas.89.12.5645
Metildi C.A., Kaushal S., Luiken G.A. et al. Fluorescently-la-beled chimeric anti-CEA antibody improves detection and resection of human colon cancer in an orthotopic nude mouse model. J Surg Oncol. 2014; 109(5): 451-458. DOI: 10.1002/jso.23507
Fumagallia A., Drosta J., Suijkerbuijka S.J. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids Proc Natl Acad Sci U S A. 2017;114(12): E2357-E2364. DOI: 10.1073/pnas.1701219114
Matano M., Date S., Shimokawa M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015; 21(3):2562-62. DOI: 10.1038/nm.3802
Zigmond E., Halpern Z., Elinav E. et al. Utilization of murine colonoscopy for orthotopic implantation of colorectal cancer. PLoS One 2011; 6: e28858. DOI: 10.1371/journal.pone.0028858
Takahashi T., Morotomi M., Nomoto K. A novel mouse model of rectal cancer established by orthotopic implantation of colon cancer cells. Cancer Sci 2004; 95: 514-519 DOI: 10.1371/journal.pone.0079453
Kishimoto H., Momiyama M., Aki R., et al. Development of a clinicallyprecise mouse model of rectal cancer. PLoS One 2013; 8: e79453 DOI: 10.1371/journal.pone.0079453
Андронова Н.В., Ситдикова С.М., Морозова Л.Ф. и др. Моделирование ортотопического роста рака почки человека с перевиваемым штаммом РПоч1 на иммунодефицитных мышах // Российский биотерапевтический журнал. - 2017. - Т. 16. - №. 1. - С 51-60.
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
© АННМО «Вопросы онкологии», Copyright (c) 2019