Intraoperative Sonographically Guided Resection of Non-Enhancing Diffuse Gliomas: Study Protocol for a Randomised, Controlled Trial
pdf (Русский)

Keywords

low-grade glioma
sonography
ultrasound
extent of resection

How to Cite

Dmitriev, A. Y., Dashyan, V. G., Prirodov, A. V., & Khamidova, L. T. (2024). Intraoperative Sonographically Guided Resection of Non-Enhancing Diffuse Gliomas: Study Protocol for a Randomised, Controlled Trial. Voprosy Onkologii, 70(1), 48–55. https://doi.org/10.37469/0507-3758-2024-70-1-48-55

Abstract

Introduction. Intraoperative sonography in surgery of non-enhancing gliomas has a number of advatages, which are real-time evaluation of tumor, multiple scans, absence of contraindications, and low cost of the equipment. Current evidence for the feasibility of sonography in the management of such tumours is low.

Methods. This is a single-center two arm randomized controlled superiority trial on 96 patients with a 1:1 allocation ratio. Primary endpoint is the extent of glioma resection (in percents). The hypothesis of the study states that the use of intraoperative sonography increases the extent of resection of non-enhancing gliomas. Block stratified randomization is provided, the stratification criterion is the location of a glioma next to the motor or speech area of the brain. The trial will include newly diagnosed solitary supratentorial non-enhancing gliomas in patients aged 18-79 years with Karnofsky performance status 60-100 %. Sonography will be used in the study group to intraoperatively assess the extent of tumor removal. In the control group, the tumor will be removed under visual control only. Intraoperative magnetic resonance imaging and fluorescence will not be used.

Conclusion. If the hypothesis is confirmed, the study will allow to more widely introduce intraoperative sonography in the surgery of brain non-enhancing gliomas and to increase the extent of their resection.

Trial registration. The study is registered with the ClinicalTrials.gov registry under the number NCT05470374 (SONOGLIO).

https://doi.org/10.37469/0507-3758-2024-70-1-48-55
pdf (Русский)

References

Weller M., van den Bent M., Preusser M., et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021; 18(3): 170-186.-DOI: https://doi.org/10.1038/s41571-020-00447-z.

Wen P.Y., Macdonald D.R., Reardon D.A., et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010; 28(11): 1963-1972.-DOI: https://doi.org/10.1200/JCO.2009.26.3541.

Zaki H.S., Jenkinson M.D., Plessis M.G.D., et al. Vanishing contrast enhancement in malignant glioma after corticosteroid treatment. Acta Neurochir. 2014; 146(8): 841-845.-DOI: https://doi.org/10.1007/s00701-004-0282-8.

Van den Bent M.J., Wefel J.S., Schiff D., et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011; 12(6): 583-593.-DOI: https://doi.org/10.1016/S1470-2045(11)70057-2.

Capelle L., Fontaine D., Mandonnet E., et al. Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases. J Neurosurg. 2013; 118(6): 1157-1168.-DOI: https://doi.org/10.3171/2013.1.JNS121.

Leroy H.A., Delmaire C., Le Rhun E., et al. High-field intraoperative MRI and glioma surgery: results after the first 100 consecutive patients. Acta Neurochir. 2019; 161(7): 1467-1474.-DOI: https://doi.org/10.1007/s00701-019-03920-6.

Prada F., Perin A., Martegani A., et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurg. 2014; 74(5): 542-552.-DOI: https://doi.org/10.1227/NEU.0000000000000301.

Almekkawi A.K., Ahmadieh T.Y., Wu E.M., et al. The use of 5-aminolevulinic acid in low-grade glioma resection: a systematic review. Oper Neurosurg. 2020; 19(1): 1-8.-DOI: https://doi.org/10.1093/ons/opz336.

Wu J.S., Gong X., Song Y.Y., et al. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurg. 2014; 61 (Suppl 1): 145-154.-DOI: https://doi.org/10.1227/NEU.0000000000000372.

Haydon D.H., Chicoine M.R., Dacey R.G. The impact of high-field-strength intraoperative magnetic resonance imaging on brain tumor management. Neurosurg. 2013; 60 (Suppl 1): 92-97.-DOI: https://doi.org/10.1227/01.neu.0000430321.39870.be.

Unsgard G., Solheim O., Lindseth F., et al. Intra-operative imaging with 3D ultrasound in neurosurgery. Acta Neurochir Suppl. 2011; 109: 181-186.-DOI: https://doi.org/10.1007/978-3-211-99651-5_28.

Bal J., Camp S.J., Nandi D. The use of ultrasound in intracranial tumor surgery. Acta Neurochir. 2016; 158(6): 1179-1185.-DOI: https://doi.org/10.1007/s00701-016-2803-7.

Prada F., Bene M.D., Rampini A., et al. Intraoperative strain elastosonography in brain tumor surgery. Oper Neurosurg. 2019; 17(2): 227-336.-DOI: https://doi.org/10.1093/ons/opy323.

Smith J.S., Chang E.F., Lamborn K.R., et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008; 26(8): 1338-1345.-DOI: https://doi.org/10.1200/JCO.2007.13.9337

Berger M.S., Deliganis A.V., Dobbins J., et al. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer. 1994; 74(6): 1784-1791.-DOI: https://doi.org/1097-0142(19940915)74:6<1784::aid-cncr2820740622>3.0.co;2-d.

Medical Research Council. Aids to the examination of the peripheral nervous system (Memorandum No. 45). London: H.M.S.O, 1976; 1-64.

Hendrix P., Senger S., Simgen A., et al. Preoperative rTMS language mapping in speech-eloquent brain lesions resected under general anesthesia: a pair-matched cohort study. World Neurosurg. 2017; 100: 425-433.-DOI: https://doi.org/10.1016/j.wneu.2017.01.041.

Karnofsky D.A., Abelmann W.H., Craver L.F., et al. The use of the nitrogen mustards in the palliative treatment of carcinoma with particular reference to bronchogenic carcinoma. Cancer. 1948:634-656.-DOI: 10.1002/1097-0142(194811)1:4%3C634::AID-CNCR2820010410%3E3.0.CO;2-L.

Scherer M., Ahmeti H., Roder C., et al. Surgery for diffuse who grade II gliomas: volumetric analysis of a multicenter retrospective cohort from the German study group for intraoperative magnetic resonance imaging. Neurosurg. 2020; 86(1): E64-E74.-DOI: https://doi.org/10.1093/neuros/nyz397.

Bo H.K., Solheim O., Kvistad K.A., et al. Intraoperative 3D ultrasound-guided resection of diffuse low-grade gliomas: radiological and clinical results. J Neurosurg. 2019; 132(2): 518-529.-DOI: https://doi.org/10.3171/2018.10.JNS181290.

Seidel K., Beck J., Stieglitz L., et al. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2013; 118(2): 287-296.-DOI: https://doi.org/10.3171/2012.10.JNS12895.

Duffau H., Capelle L. Preferential brain locations of low-grade gliomas. Cancer. 2004; 100(12): 2622-2626.-DOI: https://doi.org/10.1002/cncr.20297.

Kelly P.J., Daumas-Duport C., Kispert D.B., et al. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987; 66(6): 865-874.-DOI: https://doi.org/10.3171/jns.1987.66.6.0865.

Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir. 2016; 158(1): 51-58.-DOI: https://doi.org/10.1007/s00701-015-2621-3.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024