The Effect of Propylthiouracil on the Life Expectancy of the Rats with C6 Glioma
pdf (Русский)

Keywords

hypothyroidism
rats
C6 glioma
survival rate
risk of death
propylthiouracil

How to Cite

Chernov, A. N., Prozorenko, E. V., Sevyan, N. V., Galimova, E. S., Davudov, M. M., Mitrofanov, A. A., & Glushakov, R. I. (2024). The Effect of Propylthiouracil on the Life Expectancy of the Rats with C6 Glioma. Voprosy Onkologii, 70(1), 56–61. https://doi.org/10.37469/0507-3758-2024-70-1-56-61

Abstract

Aim. To study the effect of the thyrostatic drug propylthiouracil (PTU) on the life expectancy of rats with C6 glioma.

Materials and Methods. In vivo brain tumor modeling was performed using intracerebral stereotaxic implantation of C6 glioma cells into rats (n = 32). Animals were randomized into two groups with 9:7 ratio. Rats of the experimental group (n = 18) were modeled hypothyroidism by oral probe (gavage) administration of propylthiouracil 15 μL per animal once a day.

Results. PTU administration significantly (χ2 = 16.91; p = 0.001) by 63.16 % increases the life expectancy of rats (n = 18; 16.0 ± 2.37 days) compared to control (n = 14; 10.0 ± 4.2 days) and reduces the risk of death (HR = 0.14; 0.05-0.38).

Conclusion. PTU administration increases the life expectancy of rats with C6 glioma and reduces the risk of death.

https://doi.org/10.37469/0507-3758-2024-70-1-56-61
pdf (Русский)

References

Davis M.E. Glioblastoma: Overview of Disease and Treatment. Clin J Oncol Nurs. 2016; 20(5 Suppl): 2-8.-DOI: https://doi.org/10.1188/16.CJON.S1.2-8.

Ou A., Yung W.K.A., Majd N. Molecular mechanisms of treatment resistance in glioblastoma. Int J Mol Sci. 2020; 22(1): E351.-DOI: https://doi.org/10.3390/ijms22010351.

Nauman P. Thyroid hormones in the central nervous system (CNS) and their effect on neoplasm formation, particularly on the development and course of glioblastoma multiforme - research hypothesis. Endokrynol Pol. 2015; 66(5): 444-59.-DOI: https://doi.org/10.5603/EP.2015.0055.

Farwell A.P., Dubord–Tomasetti S.A., Pietrzykowski A.Z., et al. Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3',5'-triiodothyronine. Brain Res Dev Brain Res. 2005; 154(11): 121-135.-DOI: https://doi.org/10.1016/j.devbrainres.2004.07.016.

Farwell A.P., Tranter M.P., Leonard J.L. Thyroxine-dependent regulation of integrin-laminin interactions in astrocytes. Endocrinology. 1995; 136(9): 3909-15.-DOI: https://doi.org/10.1210/en.136.9.3909.

Trentin A.G., De Aguiar C.B., Garcez R.C., Alvarez-Silva M. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion. Glia. 2003; 42: 359-69.-DOI: https://doi.org/10.1002/glia.10228.

Moeller L.C., Führer D. Thyroid hormone, thyroid hormone receptors, and cancer: a clinical perspective. Endocr Relat Cancer. 2013; 20(2): R19-29.-DOI: https://doi.org/10.1530/ERC-12-0219.

Zhang L., Cooper-Kuhn C.M., Nannmark U., et al. Stimulatory effects of thyroid hormone on brain angiogenesis in vivo and in vitro. J Cereb Blood Flow Metab. 2010; 30(2): 323-335.-DOI: https://doi.org/10.1038/jcbfm.2009.216.

Gilbert M.E., Paczkowski C. Propylthiouracil (PTU)-induced hypothyroidism in the developing rat impairs synaptic transmission and plasticity in the dentate gyrus of the adult hippocampus. Brain Res Dev Brain Res. 2003; 145(1): 19-29.-DOI: https://doi.org/10.1016/s0165-3806(03)00191-3.

Wémeau J.L., Pigeyre M., Proust-Lemoine E., et al. Beneficial effects of propylthiouracil plus L-thyroxine treatment in a patient with a mutation in MCT8. J Clin Endocrinol Metab. 2008; 93(6): 2084-8.-DOI: https://doi.org/10.1210/jc.2007-2719.

Lefauconnier J.M., Lacombe P., Bernard G. Cerebral blood flow and blood-brain influx of some neutral amino acids in control and hypothyroid 16-day-old rats. J Cereb Blood Flow Metab. 1985; 5(2): 318-26.-DOI: https://doi.org/10.1038/jcbfm.1985.41.

Sunitha Y., Udaykumar P., Raghunath M. Changes in blood-brain barrier nutrient transport in the offspring of iodine-deficient rats and their preventability. Neurochem Res. 1997; 22(7): 785-90.-DOI: https://doi.org/10.1023/a:1022023524106.

Davis P.J., Lin H.Y., Hercbergs A.A., et al. How thyroid hormone works depends upon cell type, receptor type, and hormone analogue: implications in cancer growth. Discov Med. 2019; 27(147): 111-117.

Shinderman-Maman E., Cohen K., Weingarten C., et al. The thyroid hormone-αvβ3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation. Oncogene. 2016; 35: 1977-1987.-DOI: https://doi.org/10.1038/onc.2015.262.

Davis F.B., Tang H.Y., Shih A. et al. Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res. 2006; 66(14): 7270-7275.-DOI: https://doi.org/10.1158/0008-5472.CAN-05-4365.

Liappas A., Alexandros L., Mourouzis I., et al. Cell-type-dependent thyroid hormone effects on glioma tumor cell lines. J Thyroid Res. 2011; 2011: 856050.-DOI: https://doi.org/10.4061/2011/856050.

Jones S.A., Jolson D.M., Cuta K.K., et al. Triiodothyronine is a survival factor for developing oligodendrocytes. Mol Cell Endocrinol. 2003; 199(1-2): 49-60.-DOI: https://doi.org/10.1016/S0303-7207(02)00296-4.

Faghih-Jouybari M., Naderi S., Mashayekhi S., et al. Hypothyroidism among patients with glioblastoma multiforme. Iran J Neurol. 2018; 17(3): 149-151.

Hercbergs A.A., Suh J.H., Lee S., et al. Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: a phase I/II study. Anticancer Res. 2003; 23(1B): 617-626.

Linetsky E., Hercbergs A., Dotan S. Time to tumor progression (TTP) and quality of life (QOL) following propylthiouracil induction of chemical hypothyroidism in failed malignant gliomas (Abstract # 144). In: World Federation of Neuro-Oncology – Second Quadrennial Meeting. Edinburgh. 2005: 318.

Ashur-Fabian O., Blumenthal D.T., Bakon M., et al. Long-term response in high-grade optic glioma treated with medically induced hypothyroidism and carboplatin: a case report and review of the literature. Anticancer Drugs. 2013; 24(3): 315-323.-DOI: https://doi.org/10.1097/CAD.0b013e32835c7a47.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024