Study of implants for intraoperative hyperthermia
pdf (Русский)

Keywords

local hyperthermia
tumor bed implant
induction heating
liquid metal alloy

How to Cite

Kaprin, A., Vasilchenko, I., Osintsev, A., Braginsky, V., Rynk, V., Gromov, E., Kostin, A., Prosekov, A., & Kotov, R. (2022). Study of implants for intraoperative hyperthermia. Voprosy Onkologii, 67(2), 233–245. https://doi.org/10.37469/0507-3758-2021-67-2-233-245

Abstract

At the present time hyperthermia is recognized as one of the most promising methods in the combined treatment of malignant tumors. Nevertheless, for the most of existing methods for heating of tumor tissues it is rather difficult to realize the exact localization of heat exposure. The aim of this study is to compare two types of implants for intraoperative local tumor bed hyperthermia carried out using induction heating in an alternating magnetic field of the sub-MHz range. Composite implants of the first type are created on the base of a self-curing plastic mass mixed with electrically conductive ferromagnetic particles. The second type of implant is a hollow object with thin walls that follows the shape of the tumor. Implants of this type are filled with a liquid metal non-magnetic alloy with melting point below room temperature. The model implants were heated in a self-designed inductor with a short cylindrical coil 35 cm in diameter. Biological tissues were modeled using an ultrasound gel. Experimental results show that both types of implants were heated in an external alternating magnetic field with a frequency of 90 kHz and an amplitude not exceeding 4 kA/m up to temperatures that allow both traditional hyperthermia (tissue heating to 41-45 °C) and thermal ablation therapy (tissue heating to temperatures above 50 °C). Good agreement between the experimental data and model numerical calculations was obtained.

https://doi.org/10.37469/0507-3758-2021-67-2-233-245
pdf (Русский)

References

Falk M.H., Issels R.D. Hyperthermia in oncology. Int J Hyperthermia. 2001;17:1-18. https://doi.org/10.1080/02656730150201552.

Hurwitz M., Stauffer P. Hyperthermia, radiation and chemotherapy: The role of heat in multidisciplinary cancer care. Semin Oncol. 2014; 41: 714-729. https://doi.org/10.1053/j.seminoncol.2014.09.014.

Datta N.R. et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treatment Reviews. 2015; 41(Issue 9): 742–753. doi: https://doi.org/10.1016/j.ctrv.2015.05.009.

Frey B., Weiss E.M., Rubner Y. et al. Old and new facts about hyperthermia-induced modulations of the immune system. Int J Hyperthermia. 2012;28(6):528-42. https://doi.org/10.3109/02656736.2012.677933.

Yohsuke Yagawa, Keishi Tanigawa, Yasunobu Kobayashi, Masakazu Yamamoto. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery J Cancer Metastasis Treat. 2017;3:218-30. https://doi.org/10.20517/2394-4722.2017.35.

Gross E.J., Cetas T.C., Stauffer P.R. et al. Experimental assessment of phased-array heating of neck tumours. Int J Hyperthermia. 1990;6:453-74. https://doi.org/10.3109/02656739009141151.

Paulides M.M., Bakker J.F., Linthorst M. et al. The clinical feasibility of deep hyperthermia treatment in the head and neck: New challenges for positioning and temperature measurement. Phys Med Biol. 2010;55:2465-80. https://doi.org/10.1088/0031-9155/55/9/003.

Canters R.A., Wust P., Bakker J.F.,Van Rhoon G.C. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia, 2009;25: 593-608. https://doi.org/10.3109/02656730903110539.

Mack C.F., Stea B., Kittelson J.M. et al. Interstitial thermoradiotherapy with ferromagnetic implants for locally advanced and recurrent neoplasms. International Journal of Radiation Oncology Biology Physics. 1993;27:109-115. https://doi.org/10.1016/0360-3016(93)90427-w.

Chin R.B., Stauffer P.R. Treatment planning for ferromagnetic seed heating. Int J Radiat Oncol Biol Phys. 1991;21:431-9. https://doi.org/10.1016/0360-3016(91)90792-3.

Ivkov R. Magnetic nanoparticle hyperthermia: A new frontier in biology and medicine? International Journal of Hyperthermia. 2013;29(8):703-705. http://dx.doi.org/10.3109/02656736.2013.857434.

Sohail A., Ahmad Z., Bég O.A. et al. A review on hyperthermia via nanoparticle-mediated therapy. Bulletin du Cancer. 2017 May;104(5):452-461. doi: https://doi.org/10.1016/j.bulcan.2017.02.003.

Silvio Dutz, Rudolf Hergt. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. International Journal of Hyperthermia. 2013; 29(Issue 8): 790-800 https://doi.org/10.3109/02656736.2013.822993.

Wei Y., Zhao M. Z., Yang F. et al. Iron overload by superparamagnetic iron oxide nanoparticles is a high risk factor in cirrhosis by a systems toxicology assessment. Sci. Rep. 2016; 6: Article number 29110. https://doi.org/10.1038/srep29110.

Chu K.F., Dupuy D.E. Thermal ablation of tumours: biological mechanisms and advances in therapy Nature Reviews Cancer. 2014;14: 199–208. https://doi.org/10.1038/nrc3672.

Schuster H., Kopf H. Thermoablation: a new treatment option to replace surgical intervention? MEMO. 2015;8: 242. https://doi.org/10.1007/s12254-015-0232-6.

Васильченко И.Л., Виноградов В.М., Пастушенко Д.А. и др. Использование локального индукционного нагрева в лечении злокачественных новообразований. Вопросы онкологии. 2013;2:84-89. https://doi.org/10.20535/s0021347015030024.

Stauffer P.R., Vasilchenko I.L., Osintsev A.M. et al. Tumor bed brachytherapy for locally advanced laryngeal cancer: a feasibility assessment of combination with ferromagnetic hyperthermia. Biomedical Physics and Engineering Express. 2016; 2: 5 https://doi.org/10.1088/2057-1976/2/5/055002.

Васильченко И.Л., Осинцев А.М., Глушков А.Н. и др. Способ персонализированной интраоперационной контактной локальной гипертермии для лечения местнораспространенных злокачественных опухолей. Патент на изобретение RUS № 2565810. Заявка № 2014124417/14 от 16.06.2014. Опубл. 20.10.2015.

Tingyi Liu; Prosenjit Sen; Chang-Jin Kim. Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices. Journal of Microelectromechanical Systems. 2012;21 (2):443-450. doi: 10.1109/JMEMS.2011.2174421.

Guyue Bo, Long Ren, Xun Xu et al. Recent progress on liquid metals and their applications, Advances in Physics: X. 2018;3(1). doi: 10.1080/23746149.2018.1446359.

Yue L., Hu Q., Lin Y. et al. Transformable liquid-metal nanomedicine. Nature Communications. 2015;6:10066. doi: 10.1038/ncomms10066.

Yue Yu, Eijiro Miyako. Alternating-Magnetic-Field-Mediated Wireless Manipulations of a Liquid Metal for Therapeutic Bioengineering. 2018;3:134-148. doi: 10.1016/j.isci.2018.04.012.

Muhamad F. bin Othman, Nabil R. Mitry, Valerie J. Lewington et al. Re-assessing gallium-67 as a therapeutic radionuclide. Nuclear Medicine and Biology. 2017; 46:12-18. doi: 10.1016/j.nucmedbio.2016.10.008.

Kanaun S., Levin V. Effective Field Method in the Theory of Heterogeneous Media. In: Effective Properties of Heterogeneous Materials. Editors: M. Kachanov and I. Sevostianov. Springer. 2013: 231-237. doi: 10.1007/978-94-007-5715-8_3.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021