Effect of metformin on doxorubicin-induced cardiotoxicity in experiment
##article.numberofdownloads## 66
##article.numberofviews## 147
pdf (Русский)

Keywords

doxorubicin
metformin
cardiotoxicity
oxidative stress
reactive oxygen species

How to Cite

Ionov, S., Orlova, V. ., & Kulbachevskaya, N. (2022). Effect of metformin on doxorubicin-induced cardiotoxicity in experiment. Voprosy Onkologii, 67(1), 35–39. https://doi.org/10.37469/0507-3758-2021-67-1-35-39

Abstract

The article provides an overview of the currently known descriptions of the mechanisms and toxic effects of two drugs: doxorubicin, a first-line drug for the treatment of cancer, and the mechanisms of action of Metformin, a drug widely used for the treatment of diabetes mellitus 2.  The review made with the usage of NCBI, PubMed and OxfordAcademic presents the analysis of published data on the protective effect of Metformin in its combined use with doxorubicin in an experiment in an attempt to reduce the manifestations of doxorubicin-induced cardiotoxicity.

https://doi.org/10.37469/0507-3758-2021-67-1-35-39
##article.numberofdownloads## 66
##article.numberofviews## 147
pdf (Русский)

References

Ajzashokouhi A., Bostan H., Jomezadeh V. et al. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol. 2019;39(3). doi:10.1177/0960327119888277.

Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology. 1999 Apr;57(7):727–41. http://dx.doi.org/10.1016/s0006-2952(98)00307-4.

Lipshultz S.E., Colan S.D., Gelber R.D. et al. Late Cardiac Effects of Doxorubicin Therapy for Acute Lymphoblastic Leukemia in Childhood. N. Eng. J. Med. 1991 Mar 21;324(12):808–15. http://dx.doi.org/10.1056/nejm199103213241205.

Wang Y., Zhu S., Liu H. et al. Thyroxine Alleviates Energy Failure, Prevents Myocardial Cell Apoptosis, and Protects against Doxorubicin-Induced Cardiac Injury and Cardiac Dysfunction via the LKB1/AMPK/mTOR Axis in Mice. Dis Markers. 2019;2019:1-10. doi:10.1155/2019/7420196.

Ichikawa Y., Ghanefar M., Bayeva M. et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Investig. 2014 Jan 2;124(2):617–30. http://dx.doi.org/10.1172/jci72931.

Suliman H.B., Carraway M.S., Ali A.S. et al. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J. Clin.Investig. 2007; 117(12):3730-41. http://dx.doi.org/10.1172/jci32967.

Singal P.K., Iliskovic N. Doxorubicin-Induced Cardiomyopathy. N. Eng. J. Med. 1998 Sep 24;339(13):900–5. http://dx.doi.org/10.1056/nejm199809243391307.

Kang Y.J., Chen Y., Epstein P.N. Suppression of Doxorubicin Cardiotoxicity by Overexpression of Catalase in the Heart of Transgenic Mice. J. Biol. Chem. 1996 May 24;271(21):12610–6. http://dx.doi.org/10.1074/jbc.271.21.12610.

Harake D., Franco V.I., Henkel J.M. et al. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol. 2012 Jul;8(4):647–70. http://dx.doi.org/10.2217/fca.12.44.

Zweier J.L., Gianni L., Muindi J. et al. Differences in O2 reduction by the iron complexes of adriamycin and daunomycin: the importance of the sidechain hydroxyl group. Biochimica et Biophysica Acta (BBA) - General Subjects. 1986 Nov;884(2):326–36. http://dx.doi.org/10.1016/0304-4165(86)90181-9.

Tocchetti C.G., Carpi A., Coppola C. et al. Ranolazine protects from doxorubicin-induced oxidative stress and cardiac dysfunction. EJHF. 2014 Jan 6;16(4):358–66. http://dx.doi.org/10.1002/ejhf.50.

Bailey C.J. Antidiabetic Drugs other than Insulin. Encyclopedia of Molecular Pharmacology. 2008; 116–25. http://dx.doi.org/10.1007/978-3-540-38918-7_109.

Кравчук Е.Н., Галагудза М.М. Применение метформина при сочетании ишемической болезни сердца и сахарного диабета 2 типа: механизмы действияи клиническая эффективность. Сахарный диабет. 2013 Март 15;16(1): 5-14 [Kravchuk E.N., Galagudza M.M. Metformin in patients with ischemic heart disease and type 2 diabetes mellitus: mechanism of action and clinical efficiency. Diabetes mellitus. 2013 Mar 15;16(1):5–14. http://dx.doi.org/10.14341/2072-0351-3590 (In Russ.)].

Patel R., Shah G. Effect of metformin on clinical, metabolic and endocrine outcomes in women with polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Current Medical Research and Opinion. 2017 Feb 3;33(9):1545–57. http://dx.doi.org/10.1080/03007995.2017.1279597.

WHO releases new edition of Model List of Essential Medicines. PharmacoEconomics& Outcomes News. 2015 May;728(1):8–8. http://dx.doi.org/10.1007/s40274-015-2128-4.

Kim Y.D., Park K-G., Lee Y-S. et al. Metformin Inhibits Hepatic Gluconeogenesis Through AMP-Activated Protein Kinase-Dependent Regulation of the Orphan Nuclear Receptor SHP. Diabetes. 2007 Oct 1;57(2):306–14. http://dx.doi.org/10.2337/db07-0381.

Liu B., Fan Z., Edgerton S.M. et al. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle. 2011 Sep;10(17):2959–66. http://dx.doi.org/10.4161/cc.10.17.16359.

Bridges H.R., Jones A.J.Y., Pollak M.N. et al. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochemical Journal. 2014 Aug 22;462(3):475–87. http://dx.doi.org/10.1042/bj20140620.

Duca F.A., Côté C.D., Rasmussen B.A. et al. Metformin activates a duodenal Ampk–dependent pathway to lower hepatic glucose production in rats. Nature Medicine. 2015 Apr 6;21(5):506–11. http://dx.doi.org/10.1038/nm.3787.

Pérez-Revuelta B.I., Hettich M.M., Ciociaro A. et al. Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death & Disease. 2014 May;5(5):e1209–e1209. http://dx.doi.org/10.1038/cddis.2014.175.

Song Y.M., Lee Y., Kim J-W. et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy. 2014 Nov 14;11(1):46–59. http://dx.doi.org/10.4161/15548627.2014.984271.

Xu T., Brandmaier S., Messias A.C. et al. Effects of Metformin on Metabolite Profiles and LDL Cholesterol in Patients With Type 2 Diabetes. Diabetes Care. 2015 Aug 5;38(10):1858–67. http://dx.doi.org/10.2337/dc15-0658.

Zhou L., Liu H., Wen X. et al. Effects of metformin on blood pressure in nondiabetic patients. Journal of Hypertension. 2017 Jan;35(1):18–26. http://dx.doi.org/10.1097/hjh.0000000000001119.

Thomopoulos C., Katsimagklis G., Makris T. Metformin and blood pressure lowering. Journal of Hypertension. 2017 Jan;35(1):27–8. http://dx.doi.org/10.1097/hjh.0000000000001146.

Wan X., Huo Y., Johns M. et al. 5′-AMP–Activated Protein Kinase–Activating Transcription Factor 1 Cascade Modulates Human Monocyte–Derived Macrophages to Atheroprotective Functions in Response to Heme or Metformin. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013 Nov;33(11):2470–80. http://dx.doi.org/10.1161/atvbaha.113.300986.

Morales D.R., Morris A.D. Metformin in Cancer Treatment and Prevention. Annual Review of Medicine. 2015 Jan 14;66(1):17–29. http://dx.doi.org/10.1146/annurev-med-062613-093128.

Draznin B. Mechanism of the mitogenic influence of hyperinsulinemia. Diabetology & Metabolic Syndrome. 2011 Jun 13;3(1). http://dx.doi.org/10.1186/1758-5996-3-10.

Ding X-Z., Fehsenfeld D.M., Murphy L.O. et al. Physiological Concentrations of Insulin Augment Pancreatic Cancer Cell Proliferation and Glucose Utilization By Activating MAP Kinase, PI3 Kinase and Enhancing GLUT-1 Expression. Pancreas. 2000 Oct;21(3):310–20. http://dx.doi.org/10.1097/00006676-200010000-00014.

Kourelis T.V., Siegel R.D. Metformin and cancer: new applications for an old drug. Medical Oncology. 2011 Feb 8;29(2):1314–27. http://dx.doi.org/10.1007/s12032-011-9846-7.

Timm K., Tyler D. The Role of AMPK Activation for Cardioprotection in Doxorubicin-Induced Cardiotoxicity. Cardiovasc Drugs Ther. 2020;34(2):255-269. doi:10.1007/s10557-020-06941-x.

Yousuf Y., Datu A., Barnes B. et al. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Res Ther. 2020;11(1). doi:10.1186/s13287-019-1480-x.

Damm E., Buech T.R.H., Gudermann T. et al. Melanocortin-Induced PKA Activation Inhibits AMPK Activity Via ERK-1/2 and LKB-1 in Hypothalamic GT1-7 Cells. Molecular Endocrinology. 2012 Apr 1;26(4):643–54. http://dx.doi.org/10.1210/me.2011-1218.

Pan Q.R., Li W.H., Wang H. et al. Glucose, Metformin, and AICAR Regulate the Expression of G Protein-coupled Receptor Members in INS-1 β Cell. Hormone and Metabolic Research. 2009 Aug 11;41(11):799–804. http://dx.doi.org/10.1055/s-0029-1234043.

Yano N., Suzuki D., Endoh M. et al. β-Adrenergic Receptor Mediated Protection against Doxorubicin-Induced Apoptosis in Cardiomyocytes: The Impact of High Ambient Glucose. Endocrinology. 2008 Dec;149(12):6449–61. http://dx.doi.org/10.1210/en.2008-0292.

Tseng Y-T. Cardioprotective effect of metformin against doxorubicin cardiotoxicity in rats. Anatol. J. Cardiol. 2016. http://dx.doi.org/10.14744/anatoljcardiol.2016.18505.

Chen X., Chen Y., Bi Y. et al. Preventive Cardioprotection of Erythropoietin Against Doxorubicin-induced Cardiomyopathy. Cardiovascular Drugs and Therapy. 2007 Oct 9;21(5):367–74. http://dx.doi.org/10.1007/s10557-007-6052-0.

Aleisa A.M., Al-Rejaie S.S., Bakheet S.A. et al. Effect of metformin on clastogenic and biochemical changes induced by adriamycin in Swiss albino mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2007 Dec;634(1-2):93–100. http://dx.doi.org/10.1016/j.mrgentox.2007.06.005.

Ryter S.W., Tyrrell R.M. The Role of Heme Oxygenase-1 in the Mammalian Stress Response: Molecular Aspects of Regulation and Function. Oxidative Stress and Signal Transduction. 1997;343–86. http://dx.doi.org/10.1007/978-1-4615-5981-8_15.

Iida K., Itoh K., Kumagai Y. et al. 767: NRF2 is Essential for the Chemopreventive Efficacy of Oltipraz Against Urinary Bladder Carcinogenesis. Journal of Urology. 2005 Apr;173(4S):208–208. http://dx.doi.org/10.1016/s0022-5347(18)34936-x.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021