摘要
В статье представлен обзор известных на сегодняшний день описаний механизмов действия и токсических эффектов двух препаратов: доксорубицина, препарата первой линии для лечения онкологических заболеваний, и метформина-препарата, широко применяемого для лечения сахарного диабета 2-го типа. С использованием систем NCBI, PubMed и OxfordAcademic представлен анализ опубликованных данных по протективному эффекту метформина при его сочетанном применении с доксорубицином в эксперименте при попытке снизить проявления доксорубицин-индуцированной кардиотоксичности.
参考
Ajzashokouhi A., Bostan H., Jomezadeh V. et al. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol. 2019;39(3). doi:10.1177/0960327119888277.
Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology. 1999 Apr;57(7):727–41. http://dx.doi.org/10.1016/s0006-2952(98)00307-4.
Lipshultz S.E., Colan S.D., Gelber R.D. et al. Late Cardiac Effects of Doxorubicin Therapy for Acute Lymphoblastic Leukemia in Childhood. N. Eng. J. Med. 1991 Mar 21;324(12):808–15. http://dx.doi.org/10.1056/nejm199103213241205.
Wang Y., Zhu S., Liu H. et al. Thyroxine Alleviates Energy Failure, Prevents Myocardial Cell Apoptosis, and Protects against Doxorubicin-Induced Cardiac Injury and Cardiac Dysfunction via the LKB1/AMPK/mTOR Axis in Mice. Dis Markers. 2019;2019:1-10. doi:10.1155/2019/7420196.
Ichikawa Y., Ghanefar M., Bayeva M. et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Investig. 2014 Jan 2;124(2):617–30. http://dx.doi.org/10.1172/jci72931.
Suliman H.B., Carraway M.S., Ali A.S. et al. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J. Clin.Investig. 2007; 117(12):3730-41. http://dx.doi.org/10.1172/jci32967.
Singal P.K., Iliskovic N. Doxorubicin-Induced Cardiomyopathy. N. Eng. J. Med. 1998 Sep 24;339(13):900–5. http://dx.doi.org/10.1056/nejm199809243391307.
Kang Y.J., Chen Y., Epstein P.N. Suppression of Doxorubicin Cardiotoxicity by Overexpression of Catalase in the Heart of Transgenic Mice. J. Biol. Chem. 1996 May 24;271(21):12610–6. http://dx.doi.org/10.1074/jbc.271.21.12610.
Harake D., Franco V.I., Henkel J.M. et al. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol. 2012 Jul;8(4):647–70. http://dx.doi.org/10.2217/fca.12.44.
Zweier J.L., Gianni L., Muindi J. et al. Differences in O2 reduction by the iron complexes of adriamycin and daunomycin: the importance of the sidechain hydroxyl group. Biochimica et Biophysica Acta (BBA) - General Subjects. 1986 Nov;884(2):326–36. http://dx.doi.org/10.1016/0304-4165(86)90181-9.
Tocchetti C.G., Carpi A., Coppola C. et al. Ranolazine protects from doxorubicin-induced oxidative stress and cardiac dysfunction. EJHF. 2014 Jan 6;16(4):358–66. http://dx.doi.org/10.1002/ejhf.50.
Bailey C.J. Antidiabetic Drugs other than Insulin. Encyclopedia of Molecular Pharmacology. 2008; 116–25. http://dx.doi.org/10.1007/978-3-540-38918-7_109.
Кравчук Е.Н., Галагудза М.М. Применение метформина при сочетании ишемической болезни сердца и сахарного диабета 2 типа: механизмы действияи клиническая эффективность. Сахарный диабет. 2013 Март 15;16(1): 5-14 [Kravchuk E.N., Galagudza M.M. Metformin in patients with ischemic heart disease and type 2 diabetes mellitus: mechanism of action and clinical efficiency. Diabetes mellitus. 2013 Mar 15;16(1):5–14. http://dx.doi.org/10.14341/2072-0351-3590 (In Russ.)].
Patel R., Shah G. Effect of metformin on clinical, metabolic and endocrine outcomes in women with polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Current Medical Research and Opinion. 2017 Feb 3;33(9):1545–57. http://dx.doi.org/10.1080/03007995.2017.1279597.
WHO releases new edition of Model List of Essential Medicines. PharmacoEconomics& Outcomes News. 2015 May;728(1):8–8. http://dx.doi.org/10.1007/s40274-015-2128-4.
Kim Y.D., Park K-G., Lee Y-S. et al. Metformin Inhibits Hepatic Gluconeogenesis Through AMP-Activated Protein Kinase-Dependent Regulation of the Orphan Nuclear Receptor SHP. Diabetes. 2007 Oct 1;57(2):306–14. http://dx.doi.org/10.2337/db07-0381.
Liu B., Fan Z., Edgerton S.M. et al. Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle. 2011 Sep;10(17):2959–66. http://dx.doi.org/10.4161/cc.10.17.16359.
Bridges H.R., Jones A.J.Y., Pollak M.N. et al. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochemical Journal. 2014 Aug 22;462(3):475–87. http://dx.doi.org/10.1042/bj20140620.
Duca F.A., Côté C.D., Rasmussen B.A. et al. Metformin activates a duodenal Ampk–dependent pathway to lower hepatic glucose production in rats. Nature Medicine. 2015 Apr 6;21(5):506–11. http://dx.doi.org/10.1038/nm.3787.
Pérez-Revuelta B.I., Hettich M.M., Ciociaro A. et al. Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death & Disease. 2014 May;5(5):e1209–e1209. http://dx.doi.org/10.1038/cddis.2014.175.
Song Y.M., Lee Y., Kim J-W. et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy. 2014 Nov 14;11(1):46–59. http://dx.doi.org/10.4161/15548627.2014.984271.
Xu T., Brandmaier S., Messias A.C. et al. Effects of Metformin on Metabolite Profiles and LDL Cholesterol in Patients With Type 2 Diabetes. Diabetes Care. 2015 Aug 5;38(10):1858–67. http://dx.doi.org/10.2337/dc15-0658.
Zhou L., Liu H., Wen X. et al. Effects of metformin on blood pressure in nondiabetic patients. Journal of Hypertension. 2017 Jan;35(1):18–26. http://dx.doi.org/10.1097/hjh.0000000000001119.
Thomopoulos C., Katsimagklis G., Makris T. Metformin and blood pressure lowering. Journal of Hypertension. 2017 Jan;35(1):27–8. http://dx.doi.org/10.1097/hjh.0000000000001146.
Wan X., Huo Y., Johns M. et al. 5′-AMP–Activated Protein Kinase–Activating Transcription Factor 1 Cascade Modulates Human Monocyte–Derived Macrophages to Atheroprotective Functions in Response to Heme or Metformin. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013 Nov;33(11):2470–80. http://dx.doi.org/10.1161/atvbaha.113.300986.
Morales D.R., Morris A.D. Metformin in Cancer Treatment and Prevention. Annual Review of Medicine. 2015 Jan 14;66(1):17–29. http://dx.doi.org/10.1146/annurev-med-062613-093128.
Draznin B. Mechanism of the mitogenic influence of hyperinsulinemia. Diabetology & Metabolic Syndrome. 2011 Jun 13;3(1). http://dx.doi.org/10.1186/1758-5996-3-10.
Ding X-Z., Fehsenfeld D.M., Murphy L.O. et al. Physiological Concentrations of Insulin Augment Pancreatic Cancer Cell Proliferation and Glucose Utilization By Activating MAP Kinase, PI3 Kinase and Enhancing GLUT-1 Expression. Pancreas. 2000 Oct;21(3):310–20. http://dx.doi.org/10.1097/00006676-200010000-00014.
Kourelis T.V., Siegel R.D. Metformin and cancer: new applications for an old drug. Medical Oncology. 2011 Feb 8;29(2):1314–27. http://dx.doi.org/10.1007/s12032-011-9846-7.
Timm K., Tyler D. The Role of AMPK Activation for Cardioprotection in Doxorubicin-Induced Cardiotoxicity. Cardiovasc Drugs Ther. 2020;34(2):255-269. doi:10.1007/s10557-020-06941-x.
Yousuf Y., Datu A., Barnes B. et al. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Res Ther. 2020;11(1). doi:10.1186/s13287-019-1480-x.
Damm E., Buech T.R.H., Gudermann T. et al. Melanocortin-Induced PKA Activation Inhibits AMPK Activity Via ERK-1/2 and LKB-1 in Hypothalamic GT1-7 Cells. Molecular Endocrinology. 2012 Apr 1;26(4):643–54. http://dx.doi.org/10.1210/me.2011-1218.
Pan Q.R., Li W.H., Wang H. et al. Glucose, Metformin, and AICAR Regulate the Expression of G Protein-coupled Receptor Members in INS-1 β Cell. Hormone and Metabolic Research. 2009 Aug 11;41(11):799–804. http://dx.doi.org/10.1055/s-0029-1234043.
Yano N., Suzuki D., Endoh M. et al. β-Adrenergic Receptor Mediated Protection against Doxorubicin-Induced Apoptosis in Cardiomyocytes: The Impact of High Ambient Glucose. Endocrinology. 2008 Dec;149(12):6449–61. http://dx.doi.org/10.1210/en.2008-0292.
Tseng Y-T. Cardioprotective effect of metformin against doxorubicin cardiotoxicity in rats. Anatol. J. Cardiol. 2016. http://dx.doi.org/10.14744/anatoljcardiol.2016.18505.
Chen X., Chen Y., Bi Y. et al. Preventive Cardioprotection of Erythropoietin Against Doxorubicin-induced Cardiomyopathy. Cardiovascular Drugs and Therapy. 2007 Oct 9;21(5):367–74. http://dx.doi.org/10.1007/s10557-007-6052-0.
Aleisa A.M., Al-Rejaie S.S., Bakheet S.A. et al. Effect of metformin on clastogenic and biochemical changes induced by adriamycin in Swiss albino mice. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2007 Dec;634(1-2):93–100. http://dx.doi.org/10.1016/j.mrgentox.2007.06.005.
Ryter S.W., Tyrrell R.M. The Role of Heme Oxygenase-1 in the Mammalian Stress Response: Molecular Aspects of Regulation and Function. Oxidative Stress and Signal Transduction. 1997;343–86. http://dx.doi.org/10.1007/978-1-4615-5981-8_15.
Iida K., Itoh K., Kumagai Y. et al. 767: NRF2 is Essential for the Chemopreventive Efficacy of Oltipraz Against Urinary Bladder Carcinogenesis. Journal of Urology. 2005 Apr;173(4S):208–208. http://dx.doi.org/10.1016/s0022-5347(18)34936-x.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2021