Abstract
Melanoma belongs to malignant tumors that are at a high risk of early metastatic spreading and have a high mortality rate.
Data from the majority of countries demonstrate a rapid increase of the incidence of melanoma.
The most important environmental risk factors are the exposure to ultraviolet rays and quantity of melanocytic nevi.
Genome wide association studies of melanoma has allowed to identify the complex mutational profile which has shown intratumoral microheterogeneity of melanoma that leads to difficulty of its treatment.
The current review provides information on epidemiological, clinical characteristics of (malignant) melanoma^ and analysis of risk factors and genetic changes in the BRAF and NRAS genes for different forms of melanoma has been performed, depending on the localisation of the primary tumor (skin, mucosal, uveal). A variety of oncogenic changes in nevi and subtypes of melanoma associated and non-associated with solar exposure are discussed.
References
Houghton AN, Polsky D. Focus on melanoma // Cancer Cell. 2002;2(4):275–8. doi: 10.1016/s1535-6108(02)00161-7
Cancer incidence in five continents. Vol. IX // IARC Sci Publ. 2008;(160):1–837.
Goyal S, Silk AW, Tian S et al. Clinical management of multiple melanoma brain metastases: a systematic review // JAMA Oncol. 2015;1(5):668–76. doi:10.1001/jamaoncol
Fecher LA, Cummings SD, Keefe MJ, Alani RM. Toward a molecular classification of melanoma // J Clin Oncol 2007;25(12):1606–20. doi:10.1200/JCO.2006.06.0442
McGovern VJ, Mihm MCJr, Bailly C et al. The classification of malignant melanoma and its histologic reporting // Cancer. 1973;32:1446–1457. doi:10.1002/1097-0142
Elder DE, Bastian BC, Cree IA et al. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of Distinct Subtypes Defined by Their Evolutionary Pathway // Arch. Pathol. Lab. Med. 2020;144:500–522. doi:10.5858/arpa.2019-0561-RA
Elwood JM, Gallagher RP. Body site distribution of cutaneous malignant melanoma in relationship to patterns of sun exposure // Int J Cancer. 1998;78(3):276–80. doi:10.1002/ (SICI) 1097-0215
Bevona C, Goggins W, Quinn T et al. Cutaneous melanomas associated with nevi // Arch Dermatol. 2003;139(12):1620–4. doi:10.1001/archderm.139.12.1620
Riley PA. Melanin // Int J Biochem Cell Biol. 1997;29(11):1235–9. doi:10.1016/s1357-2725(97)00013
Hauser JE, Kadekaro AL, Kavanagh et al. Melanin content and MC1R function independently affect UVR-induced DNA damage in cultured human melanocytes // Pigment Cell Res. 2006;19(4):303–314. doi:10.1111/j.1600-0749.2006.00315.x
Kanetsky PA, Panossian S, Elder DE et al. Genotype Convey Information About Melanoma Risk Beyond Risk Phenotypes? // Cancer 2010;116(10):2416–2428. doi:10.1002/cncr.24994
Abdel-Malek ZA, Swope VB, Starner RJ et al. Melanocortins and the melanocortin 1 receptor, moving translation ally towards melanoma prevention // Arch Biochem Biophys. 2014;563:4–12. doi:10.1016/j.abb.2014.07.002
Fargnoli MC, Gandini S, Peris K et al. MC1R Variants Increase Melanoma Risk in Families with Cdkn2a Mutations: A Meta-Analysis // Eur. J. Cancer. 2010;46(8):1413–20. doi:10.1016/j.ejca
Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Angew Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis // Chem Int Ed Engl. 2017;56(33):9812–9815. doi:10.1002/anie.201704616
Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma // Curr Opin Oncol. 2008;20(2):183–9. doi:10.1097/CCO.0b013e3282f5271c 183-9
Hodis E, Watson IR, Kryukov GV et al. A landscape of driver mutations in melanoma // Cell. 2012;150(2):251–63. doi:10.1016/j.cell.2012.06.024
Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective // Cancer. 2014;120(22):3446–56. doi:10.1002/cncr.28864
Röring M, Brummer T. Aberrant B-raf signaling in human cancer ― 10 years from bench to bedside // Critical reviews in oncogenesis. 2012;17(1):97–121. doi:10.1615/critrevoncog. v17.i1.70
Wan PT, Garnett MJ, Roe SM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of BRAF // Cell. 2004;116(6):855–67. doi:10.1016/s0092-8674
Ascierto PA, Kirkwood JM, Grob JJ et al. The role of BRAF V600 mutation in melanoma // J Transl Med. 2012;10:85. doi:10.1186/1479-5876-10-85
Bucheit AD, Syklawer E, Jakob JA et al. Clinical characteristics and outcomes with specific BRAF and NRAS mutations in patient swith metastatic melanoma // Cancer. 2013;119(21):3821–9. doi:10.1002/cncr.28306
Bauer J, Büttner P, Murali R et al BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site // Pigment Cell Melanoma Res. 2011;24(2):345–51. doi:10.1111/j.1755-148X
Whiteman DC, Pavan WJ, Bastian BC. The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin // Pigmen Cell Melanoma Res. 2011;24(5):879–97. doi:10.1111/j.1755-148X.2011.00880.x
Pleasance ED, Cheetham RK, Stephens PJ et al. A Comprehensive Catalogue of Somatic Mutations from a Human Cancer Genome // Nature. 2010;463:191–196. doi:10.1038/ nature08658
Hayward NK, Wilmott JS, Waddell N et al. Whole-genome landscapes of major melanoma subtypes // Nature. 2017;545(7653):175–180. doi:10.1038/nature22071
Damsky WE, Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship // Oncogene. 2017;36(42):5771–5792. doi:10.1038/onc
Shain AH, Yeh I, Kovalyshyn I et al. The Genetic Evolution of Melanoma from Precursor Lesions // N Engl J Med. 2015;373(20):1926–36. doi:10.1056/NEJMoa1502583
Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence // Int J Mol Sci. 2021;22(23):13173. doi:10.3390/ijms222313173
Michaloglou C, Vredeveld LC, Soengas MS еt al. BRAF E600-associated senescence-like cell cycle arrest of human naevi // Nature. 2005;436(7051):720–4. doi:10.1038/nature03890
McNeal AS, Liu K, Nakhate V et al. CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma // Cancer Discov. 2015;5(10):1072–85. doi:10.1158/2159-8290.CD-15-0196
Damsky W, Micevic G, Meeth K et al. mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation // Cancer Cell. 2015;27:41–56.
Dankort D, Curley DP, Cartlidge RA et al. Braf (V600E) cooperates with Pten loss to induce metastatic melanoma // Nat Genet. 2009;41(5):544–52. doi:10.1038/ng.356
Amann VC, Ramelyte E, Thurneysen S et al. Developments in Targeted Therapy in Melanoma // Eur. J. Surg. Oncol. 2017;43(3):581–593. doi:10.1016/j.ejso
Leonardi GC, Falzone L, Salemi R et al. Cutaneous Melanoma: From Pathogenesis to Therapy // Int. J. Oncol. 2018, 52(4):1071–1080. doi:10.3892/ijo. 2018. 4287
Jakob JA, Bassett RLJr, Ng CS et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma // Cancer. 2012;118(16):4014–23. doi:10.1002/cncr. 26724
Mori T, Sukeda A, Sekine S et al. SOX10 Expression as Well as BRAF and GNAQ/11 Mutations Distinguish Pigmented Ciliary Epithelium Neoplasms From Uveal Melanomas // Invest Ophthalmol Vis Sci. 2017;58(12):5445–5451. doi:10.1167/iovs.17-22362
Wong CW , Fan YS, Chan TL et al. BRAF and NRAS mutations are uncommon in melanomas arising in diverse internal organs // 2005;58(6):640–4. doi:10.1136 /jcp
Newton-Bishop J, Bishop DT, Harland M. Acta Derm Venereol // Melanoma Genomics. 2020;100(11):adv00138. doi:10.2340/00015555-349
Alexandrov LB, Nik-Zainal S, Wedge DC et al. Signatures of mutational processes in human cancer // Nature. 2013;500(7463):415–21. doi:10.1038/nature12477
Thomas NE, Berwick M, Cordeiro-Stone M. Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation? // J Invest Dermatol. 2006;126(8):1693–6. doi:10.1038/sj.jid.5700458
Colebatch AJ, Ferguson P, Newell F et al Molecular Genomic Profiling of Melanocytic Nevi // J Invest Dermatol. 2019;139(8):1762–1768. doi:0.1016/j.jid.2018.12.033
Falchook GS, Long GV, Kurzrock R et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial // Lancet. 2012;379(9829):1893–901. doi:10.1016/S0140-6736(12)60398-5
Chiappetta C, Proietti I, Soccodato V et al. Braf and Nras Mutations Are Heterogeneous and Not Mutually Exclusive in Nodular Melanoma // Appl. Immunohistochem Mol. Morphol. 2015, 23(3):172–7. doi:10.1097/PAI.0000000000000071
Jakob JA, Bassett RL, Jr Ng CS et al. Nras Mutation Status Is an Independent Prognostic Factor in Metastatic Melanoma // Cancer. 2012, 118(16):4014–23. doi:10.1002/cncr.26724
Thomas NE, Edmiston SN, Alexander A et al. Association between Nras and Braf Mutational Status and Melanoma-Specific Survival among Patients with Higher-Risk Primary Melanoma // JAMA Oncol. 2015;1(3):359–68. doi:10.1001/jamaoncol. 2015.0493
Dummer R, Schadendorf D, Ascierto PA et al. Binimetinib versus dacarbazine in patients wit had advanced NRAS –mutant melanoma (NEMO): amulticentre, open-label, randomised,phase 3 trial // Lancet Oncol 2017;18(4):435–445. doi:10.1016/S1470-2045(17) 30180-8
Johnson DB, Lovly CM, Flavin M et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies // Cancer Immunol Res. 2015;3(3):288–295. doi:10.1158/2326-6066.CIR-14-0207
Johnson DB, Puzanov I. Treatment of NRAS-mutant melanoma // Curr Treat Options Oncol. 2015;16(4):15. doi:10.1007/s11864-015-0330-z
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2022