Evolutionary development of radiotherapy technologies in locally advanced cervical cancer
pdf (Русский)

Keywords

locally advanced cervical cancer
remote radiotherapy
brachytherapy
evolution of radiotherapy technologies

How to Cite

Solodkiy, V. A., Titova, V., & Panshin , G. A. (2023). Evolutionary development of radiotherapy technologies in locally advanced cervical cancer. Voprosy Onkologii, 69(1), 15–23. https://doi.org/10.37469/0507-3758-2023-69-1-15-23

Abstract

Over the past two decades, radiotherapy paradigms have completely shifted from a two-dimensional (2D) imaging based solely on anatomical bone landmarks to patient-specific, three-dimensional (3-D) image-based internal dosimetry. The new approaches take into account differences in tumor size, position and organs at risk (OARs), which helps to more accurately deliver focal radiotherapy doses to the targets while maximizing OAR dose sparing.

This article briefly outlines the advances in remote radiotherapy (RRT) and automated brachytherapy (ABT) for the treatment of locally advanced cervical cancer. At the same time the study focuses in the evolution process from 2D to 3D conformal radiotherapy (3D-CRT), followed by intensity-modulated radiation therapy (IMRT), which has now become the standard of planning and delivering RRT. Advances in brachytherapy (BT) are discussed, in particular the shift from the Manchester low-dose-rate BT system to the adaptive 3D Image-Guided Brachytherapy (3D-IGABT) that has been currently introduced. In this context, the paper highlights recent large cohort studies that have shown significant improvements in local control (LC) and reductions in toxicity associated with the use of 3D-IGABT technology. Finally, the study provides a brief summary of other emerging technologies in radiotherapy for invasive locally advanced cervical cancer.

https://doi.org/10.37469/0507-3758-2023-69-1-15-23
pdf (Русский)

References

Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191-e203. doi: 10.1016/S2214-109X(19)30482-6.

Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492.

Brenner DR, Weir HK, Demers AA, et al. Canadian Cancer Statistics Advisory Committee. Projected estimates of cancer in Canada in 2020. CMAJ. 2020;192(9):E199-E205. doi: 10.1503/cmaj.191292.

Benard VB, Watson M, Saraiya M, et al. Cervical cancer survival in the United States by race and stage (2001-2009): Findings from the CONCORD-2 study. Cancer. 2017;123 Suppl 24(Suppl 24):5119-5137. doi: 10.1002/cncr.30906.

Canadian Cancer Statistics 2017 [Internet]. Canadian Cancer Society’s Advisory Committee on Cancer Statistics; Toronto (Canada); 2017 [cited 2021 Feb 8]. Available from: http://www.cancer.ca/en/cancer-information/cancer-type/cervical/statistics/?region=on#ixzz5cntbaO3P.

Han K, Milosevic M, Fyles A, et al. Trends in the utilization of brachytherapy in cervical cancer in the United States. Int J Radiat Oncol Biol Phys. 2013;87(1):111-9. doi: 10.1016/j.ijrobp.2013.05.033.

Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. Journal of Clinical Oncology [Internet]. 2008;26(35):5802-12. doi:10.1200/JCO.2008.16.4368.

Chino J, Annunziata CM, Beriwal S, et al. The ASTRO clinical practice guidelines in cervical cancer: Optimizing radiation therapy for improved outcomes. Gynecologic Oncology [Internet]. 2020;159(3):607-10. doi: 10.1016/j.ygyno.2020.09.015.

Morris M, Eifel PJ, Lu J, et al. Pelvic Radiation with Concurrent Chemotherapy Compared with Pelvic and Para-Aortic Radiation for High-Risk Cervical Cancer. N. Engl. J. Med. 1999;340(15):1137-43. doi: 10.1056/NEJM199904153401501.

Keys HM, Bundy BN, Stehman FB, et al. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J. Med. 1999;340(15):1154-61. doi: 10.1056/NEJM199904153401503.

Whitney CW, Sause W, Bundy BN, et al. randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: A gynecologic oncology group and southwest oncology group study. J. Clin. Oncol. 1999;17(5):1339-1339. doi:10.1200/JCO.1999.17.5.1339.

Peters WA, Liu PY, Barrett RJ, et al. concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the Cervix. J. Clin. Oncol. 2000;18(8):1606-13. doi: 10.1200/JCO.2000.18.8.1606.

Rose PG, Bundy BN, Watkins EB, et al. concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N. Engl. J. Med. 1999;340(15):1144-53. doi:10.1056/NEJM199904153401502.

Lee J, Lin JB, Chang CL, et al. Impact of para-aortic recurrence risk-guided intensity-modulated radiotherapy in locally advanced cervical cancer with positive pelvic lymph nodes. Gynecol Oncol. 2018;148(2):291-298. doi:10.1016/j.ygyno.2017.12.003.

Ping Q, Zeng J, Sun P, et al. Efficacy of preoperative brachytherapy for controlling vaginal bleeding in early-stage cervical cancer: a retrospective study. Transl Cancer Res. 2021;10(7):3259-3267. doi:10.21037/tcr-21-467.

Yang H, Feng C, Cai BN, et al. Comparison of three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy in the treatment of cervical esophageal carcinoma. Dis Esophagus. 2017;30(2):1-8. doi:10.1111/dote.12497.

Arul Ponni TR, Avinash HU, Nirmala S, et al. Optimal technique of radiotherapy for carcinoma cervix in developing countries: Dosimetric and logistic comparison. J Cancer Res Ther. 2018;14(6):1207-1213. doi:10.4103/jcrt.JCRT_454_17.

Green JA, Kirwan JM, Tierney JF, et al. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet. 2001;358(9284):781-6. doi:10.1016/S0140-6736(01)05965-7.

Husstedt W, Oberheuser F. Ergebnisse der Rezidivbestrahlung beim Kollumkarzinom [Results of irradiation in recurrent collum carcinoma (In German)]. Fortschr Med. 1977;95(6):355-7. In: [PubMed] Curr. Oncol. 2022, 29 942.

Kim RY, McGinnis LS, Spencer SA, et al. Conventional four-field pelvic radiotherapy technique without computed tomography-treatment planning in cancer of the cervix: potential geographic miss and its impact on pelvic control. Int J Radiat Oncol Biol Phys. 1995;31(1):109-12. doi: 10.1016/0360-3016(94)00337-K.

Bonin SR, Lanciano RM, Corn BW, et al. Bony landmarks are not an adequate substitute for lymphangiography in defining pelvic lymph node location for the treatment of cervical cancer with radiotherapy. Int J Radiat Oncol Biol Phys. 1996;34(1):167-72. doi:10.1016/0360-3016(95)02055-1.

Ambrose J, Hounsfield G. Computerized transverse axial tomography. Br J Radiol. 1973;46(542):148-9. doi:10.1259/0007-1285-46-552-1023.

Gerstner N, Wachter S, Knocke TH, et al. The benefit of Beam's eye view based 3D treatment planning for cervical cancer. Radiother Oncol. 1999;51(1):71-8. doi:10.1016/s0167-8140(99)00038-9.

Olofsen-van Acht MJ, Quint S, Seven M, et al. Three-dimensional treatment planning for postoperative radiotherapy in patients with node-positive cervical cancer. Comparison between a conventional and a conformal technique. Strahlenther Onkol. 1999;175(9):462-9. doi:10.1007/s000660050037.

Vargo JA, Kim H, Choi S, et al. Extended field intensity modulated radiation therapy with concomitant boost for lymph node-positive cervical cancer: analysis of regional control and recurrence patterns in the positron emission tomography/computed tomography era. Int J Radiat Oncol Biol Phys. 2014;90(5):1091-8. doi:10.1016/j.ijrobp.2014.08.013.

Portelance L, Chao KS, Grigsby PW, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51(1):261-6. doi:10.1016/s0360-3016(01)01664-9.

Rose BS, Aydogan B, Liang Y, et al. Normal tissue complication probability modeling of acute hematologic toxicity in cervical cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(3):800-7. doi:10.1016/j.ijrobp.2009.11.010.

Simpson DR, Song WY, Moiseenko V, et al Normal tissue complication probability analysis of acute gastrointestinal toxicity in cervical cancer patients undergoing intensity modulated radiation therapy and concurrent cisplatin. Int J Radiat Oncol Biol Phys. 2012;83(1):e81-6. doi:10.1016/j.ijrobp.2011.12.012.

Huang J, Gu F, Ji T, et al. Pelvic bone marrow sparing intensity modulated radiotherapy reduces the incidence of the hematologic toxicity of patients with cervical cancer receiving concurrent chemoradiotherapy: a single-center prospective randomized controlled trial. Radiat Oncol. 2020;15(1):180. doi:10.1186/s13014-020-01606-3.

Gandhi AK, Sharma DN, Rath GK, et al. Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: a prospective randomized study. Int J Radiat Oncol Biol Phys. 2013;87(3):542-8. doi:10.1016/j.ijrobp.2013.06.2059.

Gandhi AK, Sharma DN, Rath GK, et al. Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: a prospective randomized study. Int J Radiat Oncol Biol Phys. 2013;87(3):542-8. doi:10.1016/j.ijrobp.2013.06.2059.

Lin Y, Chen K, Lu Z, et al. Intensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysis. Radiat. Oncol. 2018;13(1). doi:https://doi.org/10.1186/s13014-018-1126-7.

Klopp AH, Moughan J, Portelance L, et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys. 2013;86(1):83-90. doi:10.1016/j.ijrobp.2013.01.017.

Wang W, Meng Q, Hou X, et al. Efficacy and toxicity of image-guided intensity-modulated radiation therapy combined with dose-escalated brachytherapy for stage IIB cervical cancer. Oncotarget. 2017;8(61):102965-102973. doi:10.18632/oncotarget.22434.

Jadon R, Pembroke CA, Hanna CL, et al. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol (R Coll Radiol). 2014;26(4):185-96. doi:10.1016/j.clon.2013.11.031.

Bondar L, Hoogeman M, Mens JW, et al. Toward an individualized target motion management for IMRT of cervical cancer based on model-predicted cervix-uterus shape and position. Radiother Oncol. 2011;99(2):240-5. doi:10.1016/j.radonc.2011.03.013.

Liang Y, Bydder M, Yashar CM, et al. Prospective study of functional bone marrow-sparing intensity modulated radiation therapy with concurrent chemotherapy for pelvic malignancies. Int J Radiat Oncol Biol Phys. 2013;85(2):406-14. doi:10.1016/j.ijrobp.2012.04.044.

Shelley CE, Barraclough LH, Nelder CL, et al. Adaptive Radiotherapy in the Management of Cervical Cancer: Review of Strategies and Clinical Implementation. Clin Oncol (R Coll Radiol). 2021;33(9):579-590. doi:10.1016/j.clon.2021.06.007.

Han K, Milosevic M, Fyles A, et al. Trends in the utilization of brachytherapy in cervical cancer in the United States. Int J Radiat Oncol Biol Phys. 2013;87(1):111-9. doi:10.1016/j.ijrobp.2013.05.033.

Tod MC, Meredith WJ. A dosage system for use in the treatment of cancer of the uterine cervix. the british journal of radiology. 1938;11(132):809-24. doi:10.1259/0007-1285-11-132-809.

Tod M, Meredith WJ. Treatment of cancer of the cervix uteri—a revised “Manchester Method.” Br. J. Radiol. 1953;26(305):252-7. doi:10.1259/0007-1285-26-305-252.

Haie-Meder C, Pötter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74(3):235-45. doi:10.1016/j.radonc.2004.12.015.

Pötter R, Haie-Meder C, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78(1):67-77. doi:10.1016/j.radonc.2005.11.014.

Hellebust TP, Kirisits C, Berger D, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol. 2010;96(2):153-60. doi:10.1016/j.radonc.2010.06.004.

Viswanathan AN, Erickson B, Gaffney DK, et al. Comparison and consensus guidelines for delineation of clinical target volume for CT- and MR-based brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2014;90(2):320-8. doi:10.1016/j.ijrobp.2014.06.005.

Sturdza AE, Knoth J. Image-guided brachytherapy in cervical cancer including fractionation. International Journal of Gynecologic Cancer [Internet] [cited 2021 Oct 19]. 2022;32(3):273-80. Available from: https://www.embracestudy. dk/UserUpload/PublicDocuments/EMBRACE%20II%20Protocol.pdf. doi: 10.1136/ijgc-2021-003056.

Dimopoulos JC, Kirisits C, Petric P, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol Biol Phys. 2006;66(1):83-90. doi:10.1016/j.ijrobp.2006.04.041.

Tanderup K, Nielsen SK, Nyvang GB, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94(2):173-80. doi:10.1016/j.radonc.2010.01.001.

Fokdal L, Sturdza A, Mazeron R, et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: Analysis from the retroEMBRACE study. Radiother Oncol. 2016;120(3):434-440. doi:10.1016/j.radonc.2016.03.020.

Serban M, Kirisits C, de Leeuw A, et al. Ring Versus Ovoids and Intracavitary Versus Intracavitary-Interstitial Applicators in Cervical Cancer Brachytherapy: Results From the EMBRACE I Study. Int J Radiat Oncol Biol Phys. 2020;106(5):1052-1062. doi:10.1016/j.ijrobp.2019.12.019.

Charra-Brunaud C, Harter V, Delannes M, et al. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol. 2012;103(3):305-13. doi:10.1016/j.radonc.2012.04.007.

Sturdza A, Pötter R, Fokdal LU, et al. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol. 2016;120(3):428-433. doi:10.1016/j.radonc.2016.03.011.

Haas JA, Witten MR, Clancey O, et al. CyberKnife Boost for Patients with Cervical Cancer Unable to Undergo Brachytherapy. Front Oncol. 2012;2:25. doi:10.3389/fonc.2012.00025.

Albuquerque K, Tumati V, Lea J, et al. A Phase II Trial of Stereotactic Ablative Radiation Therapy as a Boost for Locally Advanced Cervical Cancer. Int J Radiat Oncol Biol Phys. 2020;106(3):464-471. doi:10.1016/j.ijrobp.2019.10.042.

Hashimoto S, Shibamoto Y, Iwata H, et al. Whole-pelvic radiotherapy with spot-scanning proton beams for uterine cervical cancer: a planning study. J Radiat Res. 2016;57(5):524-532. doi:10.1093/jrr/rrw052.

Song WY, Huh SN, Liang Y, et al. Dosimetric comparison study between intensity modulated radiation therapy and three-dimensional conformal proton therapy for pelvic bone marrow sparing in the treatment of cervical cancer. J Appl Clin Med Phys. 2010;11(4):3255. doi:10.1120/jacmp.v11i4.3255.

Dinges E, Felderman N, McGuire S, et al. Bone marrow sparing in intensity modulated proton therapy for cervical cancer: Efficacy and robustness under range and setup uncertainties. Radiother Oncol. 2015;115(3):373-8. doi:10.1016/j.radonc.2015.05.005.

Marnitz S, Wlodarczyk W, Neumann O, et al. Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation - an intraindividual comparison. Radiat Oncol. 2015;10:91. doi:10.1186/s13014-015-0402-z.

Lin LL, Kirk M, Scholey J, et al. Initial Report of Pencil Beam Scanning Proton Therapy for Posthysterectomy Patients With Gynecologic Cancer. Int J Radiat Oncol Biol Phys. 2016;95(1):181-189. doi:10.1016/j.ijrobp.2015.07.2205.

Vyfhuis MAL, Fellows Z, McGovern N, et al. Preserving Endocrine Function in Premenopausal Women Undergoing Whole Pelvis Radiation for Cervical Cancer. Int J Part Ther. 2019;6(1):10-17. doi:10.14338/IJPT-D-19-00061.1.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023