Genome-wide analysis of DNA methylation in prostate cancer using the technology of Infinium HumanMethylation450 BeadChip (HM450)
##article.numberofdownloads## 93
##article.numberofviews## 104
PDF (Русский)

Keywords

prostate cancer
DNA methylation
diagnostics

How to Cite

, , , , , , , , , , , , , & . (2016). Genome-wide analysis of DNA methylation in prostate cancer using the technology of Infinium HumanMethylation450 BeadChip (HM450). Voprosy Onkologii, 62(1), 122–132. https://doi.org/10.37469/0507-3758-2016-62-1-122-132

Abstract

Using the technology of DNA chips Infinium HumanMethylation 450 BeadChip it was analyzed quantitative DNA methylation status in 12 paired samples of prostate adenocarcinoma, and morphologically altered tissues. Analysis of differentially methylated regions of the genome showed an association with abnormal status for 21610 and 3852 hypomethylated hyper-methylated CpG sites. Dominance in the cancer genome hypermethylated sites and their predominant localization in the regulatory regions of genes indicate their possible role in the implementation of mechanisms of gene suppression in the pathogenesis of prostate cancer (PCa). For 14 genes studied were characterized array maximum values hypermethylation in promoter region (> 50% CpG sites) in combination with a high level of methylation differences between treatment groups (> 40%). Role of hypermethylation in some of them: AOX1, KLF8, ZNF154, TMEM106A in the pathogenesis of prostate cancer has been showed previously. Hypermethylation of genes ACSS3, TAC1, TUBA4B, ZSCAN12 not previously been shown for prostate cancer, but is characterized by the association with other cancers. In turn, the differences in the levels of methylation in genes GPRASP1, NKX2-6, ARX, CYBA, EPSTI1, RHCG been documented as a result of a number of genome-research oncology, but has not been studied in detail. To assess the diagnostic potential of epigenetic markers of prostate cancer there was carried out unbiased selection of individual CpG sites most reliably discriminate against tumor samples from a group of no tumor samples. In selected diagnostic model based on logistic regression included 9 CpG sites. Validation of the model was carried out on an independent dataset of methylation of 40 paired samples from the prostate cancer project Atlas of Cancer Genome (TCGA) analyzed on the same version of the DNA chip. Summarized rates of diagnostic informativeness of a model (specificity 95%, sensitivity of 97%, the area under the curve of the diagnostic test (ROC) - 0,96), obtained after validation, allow us to consider these CpG Sites as potential markers for molecular diagnosis of prostate cancer.
https://doi.org/10.37469/0507-3758-2016-62-1-122-132
##article.numberofdownloads## 93
##article.numberofviews## 104
PDF (Русский)

References

Аполихин О.И., Сивков А.В., Бешлиев Д.А. и др. Анализ уронефрологической заболеваемости в РФ по данным официальной статистики // Эксперимент. и клин. урология. - 2010. - № 1. - С. 4-12.

Лопаткин Н.А., Максимов В.А., Ходырева Л.А., Давыдова Е.Н. Оптимизация ранней диагностики заболеваний предстательной железы в условиях мегаполиса // Урология. - 2009.- № 5. -С. 50-54.

Чиссов В.И., Русаков И.Г Заболеваемость раком предстательной железы в Российской Федерации // Экспериментальная и клиническая урология. - 2011. - № 2-3. - С. 6-7.

Arai Е., Chiku S., Mori T., Gotoh M. et al. Single-CpG-resolution methylome analysis identifies clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas // Carcinogenesis. - 2012. - Vol. 33. - P 1487-1493.

Bapat S.A., Krishnan A., Ghanate A.D. et al. Gene expression: protein interaction systems network mo deling identifies transformation associated molecules and pathwaysin ovarian cancer // Cancer Res. - 2010. - Vol. 70 (12). - P. 4809-4819.

Behbahani Т.Е., Kahl P, von der Gathen J. et al. Alterations of global histone H4K20 methylation during prostate carcinogenesis // BMC Urol. - 2012. - Vol. 13. - P. 12-15.

Belinsky S.A., Baylin S.B., Herman J.G., Brock M.V. Functional identification of cancer-specific methylation of CD01, HOXA9, and TAC1 for the diagnosis of lung cancer // Clin Cancer Res. - 2014. - Vol. 20. - P 1856-1864.

Borno S.T., Fischer A., Kerick M. et al. Schweiger MR. Genome-wide DNA methylation events in TMPRSS2^RG fusion-negative prostate cancers implicate an Е7Н2-dependent mechanism with miR-26a hypermethylation // Cancer Discov 2012. - Vol. 2. - P. 1024-1035.

Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers // Nature. - 2012. - Vol. 489. - P. 519-525.

Davis, S., Du P, Bilke, S., Triche, T., Bootwalla, M. (2013) Methylumi: Handle Illumina methylation data (R package version 2.6.1).

Decock A., Ongenaert M., Hoebeeck J. et al. Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers // Genome Biol. - 2012. -Vol. 13 (10). - P 95.

Devaney J.M., Wang S., Funda S. et al. Identificationof novel DNA-methylated genes that relate with human prostate cancer and high-grade prostatic intraepithelial neoplasia // Prostate Cancer Prostatic Dis. - 2013. - Vol.16. - P. 292-300.

Ellinger J., Kahl P., von der Gathen J. et al. Global levels of histone modifications predict prostate cancer recurrence // Prostate. - 2010. - Vol. 70 (1). - P. 61-69.

Falcon S., Gentleman R. Using GOstats to test gene lists for GO term association // Bioinformatics. - 2007. - Vol. 23 (2). - P. 257-258.

Flegel C., Manteniotis S., Osthold S. et al. Еxpression profile of ectopic olfactory receptors determined by deep sequencing // PLoS One. 2013. - Vol. 8 (2). - P. 55368.

Haldrup C., Mundbjerg K., Vestergaard Е.M. et al. Sorensen KD. DNA methylation signatures for prediction of biochemical recurrence after radical prostatectomy of clinically localized prostate cancer // J. Clin. Oncol. -2013. - Vol. 31. - P. 3250-3258.

He H.J., Gu X.F., Xu W.H. et al. Kr ppel-like factor 8 is a novel androgen receptor co-activator in human prostate cancer.// Acta Pharmacol Sin. - 2013. - Vol. 34 (2). - P. 282-288.

Geybels M.S., Zhao S., Wong C.J. et al. Еpigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue // Prostate. - 2015. - Sep 18.

James S.R., Cedeno C.D., Sharma A. et al. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGЕA11 // Еpigenetics. - 2013. - Vol. 8 (8). - P. 849-863.

Jensen T.J., Novak P., ЕЬІІп ^Е. et al. Еpigenetic remodeling during arsenical-induced malignant transformation // Carcinogenesis. - 2008. - Vol. 29 (8). - P 1500-1508.

Jerome F., Trevor H., Robert T. Regularization Paths for Generalized Linear Models via Coordinate Descent // Journal of Statistical Software. - 2010. - Vol. 33 (1). -P. 1-22.

Jeronimo C., Usadel H., Henrique R. et al. Quantitative GST П1 hypermethylation in bodily fluids of patients with prostate cancer // Urology. - 2002. - Vol. 60. - № 6. - P. 1131-1135.

Kim J.W., Kim S.T., Turner A.R. et al. Identification of new differentially methylated genes that have potential functional consequences in prostate cancer // PLoS ONЕ. -2012. - Vol. 7. -e48455.

Kobayashi Y, Absher D.M., Gulzar Z.G. et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases inprostate cancer // Genome Res. - 2011. - Vol. 21 (7). - P. 1017-1027.

Kolbe D.L., DeLoia J.A., Porter-Gill P. et al. Differential analysis of ovarian and endometrial cancers identifies a methylator phenotype // Califano J. ed. PLoS One. - 2012. - Vol. 7 (3). -e32941.

Langford D.J., Paul S.M., West C.M. et al. Variations in potassium channel genes are associated with distinct trajectories of persistent breast pain after breast cancer surgery // Pain. - 2015. - Vol. 156 (3). - P 371-380.

Li L.C. Еpigenetics of prostate cancer // Front. Biosci. - 2007. - Vol. 12. - P. 33773397.

Lin P.C., Giannopoulou Е^., Park K. et al. Еpigenomic alterations in localized and advanced prostate cancer // Neoplasia. - 2013. - Vol. 15 (4). - P. 373-383.

Mahapatra S., Klee Е.W., Young C.Y. et al. Global methylation profiling for risk prediction of prostate cancer // Clin. Cancer Res. - 2012. - Vol. 18. - P. 2882-2895.

Neuhaus Е.М., Zhang W., Gelis L. et al. Activation of an olfactory receptor inhibits proliferation of prostate cancer cells // J. Biol. Chem. - 2009. - Vol. 284 (24). - P 16218-16225.

Pavlova T.V., Kashuba V.I., Muravenko O.V. et al. Technology of analysis of epigenetic and structural changes of epithelial tumors genome with NotI-microarrays by the example of human chromosome // Mol. Biol. - 2009. -Vol. 43 (2). - P. 339-347.

Reka A.K., Chen G., Jones R.C., Amunugama R. et al. Epithelial-mesenchymal transition-associated secretory phenotype predicts survival in lung cancer patients // Carcinogenesis. - 2014. - Vol. 35 (6). - P. 1292-1300.

Shen J., Wang S., Zhang Y.-J. et al. Genome-wide DNA methylation profiles in hepatocellular carcinoma // Hepatology. - 2012. - Vol. 55. - P. 1799-1808.

Schweikert E.M., Devarajan A., Witte I. et al. PON3 is up-regulatedin cancer tissues and protects against mitochondrial superoxide-mediated celldeath // Cell Death Differ. - 2012. - Vol. 19 (9). - P. 1549-1560.

Smyth, G.K., Gentleman R., Carey V., et al. Limma: linear models for microarray data // Bioinformatics and Computational Biology Solutions Using R and Bioconductor, - 2005. - P. 397-420. Springer, New York.

Staibano S., Mascolo M., Mancini F.P. et al. Over-expression of chromatin assembly factor-1 (CAF-1) p60 is predictive of adverse behaviour of prostatic cancer // Histopathology. - 2009. - Vol. 54 (5). - P. 580-589.

Supek F., Bosnjak M., Skunca N., Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms // PLoS One. - 2011. - Vol. 6 (7). - e21800.

Takanami I., Inoue Y, Gika M. G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer // BMC Cancer. - 2004. - Vol. 13 (4). - P. 79.

Teschendorff A., Liu X., Caren H. et al. The dynamics of DNA methylation covariation patterns in carcinogenesis // PloS Comput Biol. - 2014. - Vol. 10 (7). - e1003709.

Teschendorff A., Marabita, F., Lechner M. et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data // Bioinformatics. - 2013. - Vol. 29 (2). - P. 189-196.

Tham C., Chew M., Soong R. et al. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer // Cancer. - 2014. - Vol. 120. - P. 3131- 3141.

Triche T.J., Weisenberger D.J., Van Den Berg D. et al. Low-level processing of Illumina Infinium DNA Methylation BeadArrays // Nucleic Acids Res. - 2013. - Vol. 41 (7). - e90.

Witte I., Foerstermann U., Devarajan A. et al. Protectors or Traitors: The Roles of PON2 and PON3 in Atherosclerosis and Cancer // J. Lipids. - 2012. - P. 342806.

Wrangle J., Machida E.O., Danilova L. et al. Functional identification of cancer-specific methylation of CDO1, HOXA9, and TAC1 for the diagnosis of lung cancer // Clin. Cancer Res. - 2014. - Vol. 20. - P. 1856-1864.

Xavier R., Natacha T., Alexandre H. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves // BMC Bioinformatics. - 2011. - Vol. 12. - P. 77.

Xu D., Qu L., Hu J. et al. Transmembrane protein 106A is silenced by promoter region hypermethylation and suppresses gastric cancer growth by inducing apoptosis // Cell Mol Med. - 2014. - Vol. 18 (8). - P. 1655-1666.

Yassen A., M ller F., Lutsik P. et al. Comprehensive Analysis of DNA Methylation Data with RnBeads // Nature Methods, - 2014. - Vol. 11 (11). - P. 1138-1140.

Site: The Human Protein Atlas - www.proteinatlas.org

Site: TCGA - The Cancer Genome Atlas - https://tcga-data.nci.nih.gov

All the Copyright statements for authors are present in the standart Publishing Agreement (Public Offer) to Publish an Article in an Academic Periodical 'Problems in oncology' ...