The Use of Botulinum Toxin Type A for the Treatment of Animation Deformity after Simultaneous Breast Reconstruction
##article.numberofdownloads## 84
##article.numberofviews## 242
pdf (Русский)

Keywords

breast cancer
animation deformity
reconstruction
implants
pain

How to Cite

Dalgatova, P. O., Zikiryakhodzhaev, A. D., Grushina, T. I., Moshurova, M. V., Naidina, K. A., & Timoshkin, V. O. (2024). The Use of Botulinum Toxin Type A for the Treatment of Animation Deformity after Simultaneous Breast Reconstruction. Voprosy Onkologii, 70(3), 440–449. https://doi.org/10.37469/0507-3758-2024-70-3-440-449

Abstract

Breast cancer is the most common malignant tumor in women. Simultaneous reconstructive interventions using endoprostheses account for approximately 70-75 % of all reconstructions in modern reconstructive plastic surgery. The frequency of animation deformity reaches 76 % in subpectoral reconstruction. At the same time, women feel discomfort in everyday life, the phenomenon of chronic postoperative pain. The options for correcting the animation deformity usually involve repeated surgical interventions, which do not guarantee reliable correction of the animation deformity, and only the replacement of the implant with a new one in a prepectoral position, which is not always possible, radically solves the problem. The aim of this review is to summarize the functional and aesthetic results of botulinum toxin type A (BTA) injections in the area of the reconstructed breast, to analyze the methodology and safety of administration in the treatment of animation deformity. A review of the literature has shown that the use of botulinum toxin type A is a minimally invasive, effective, but reversible alternative to surgical treatment options. In the vast majority of cases, the injection was given in the pectoralis major muscle (including intraoperatively) or in the latissimus dorsi muscle, more commonly at a dose of 100 IU per zone, although the safety of increasing the dose to 250 IU has been demonstrated. No local or systemic adverse reactions were reported. Due to the reversibility of the effect, it is recommended that the injections be repeated at intervals of 3-4 months. The subjective muscle relaxant effect occurred at least 3 days after the first BTA injection and coincided with the onset of pain relief. In addition, the use of BTA significantly reduced the use of narcotic analgesics from 7-14 days post-operatively. Due to the limited number of studies on this topic, further observation and research is needed on the issues discussed in the review.

https://doi.org/10.37469/0507-3758-2024-70-3-440-449
##article.numberofdownloads## 84
##article.numberofviews## 242
pdf (Русский)

References

Ferlay J., Ervik M., Lam F., et al. Factsheets. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 2024. URL: https://gco.iarc.who.int/today.

Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. Состояние онкологической помощи населению России в 2022 году. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2022; (илл.): 239. ISBN 978-5-85502-283-4. [Ed. by Kaprin A.D., Starinskiy V.V., Shahzadova. The state of cancer care for the Russian population in 2022. Moscow: P. Hertsen MORI – branch of the FSBI NMRRC of the Ministry of Health of Russia. 2022; (ill.): 239. ISBN: 978-5-85502-283-4. (in Rus)].

Lucas D.J., Sabino J., Shriver C.D., et al. Doing more: trends in breast cancer surgery, 2005 to 2011. Am J Surg. 2015; 81(1): 74-80.-DOI: https://doi.org/10.1177/000313481508100133.

American Society of Plastic Surgeons. Plastic Surgery Statistics Report: ASPS National Clearinghouse of Plastic Surgery Procedural Statistics. 2020: 26. URL: https://www.plasticsurgery.org/documents/News/Statistics/2020/plastic-surgery-statistics-full-report-2020.pdf.

Dyrberg D.L., Bille C., Gunnarsson G.L., et al. Breast animation deformity. Arch Plast Surg. 2019; 46(1): 7-15.-DOI: https://doi.org/10.5999/aps.2018.00479.

Meshkin D.H., Firriolo J.M., Karp N.S., et al. Management of complications following implant-based breast reconstruction: a narrative review. Ann Transl Med. 2023; 11(12): 416.-DOI: https://doi.org/10.21037/atm-23-1384.

Dyrberg D.L., Bille C., Koudahl V., et al. Evaluation of breast animation deformity following pre- and subpectoral direct-to-implant breast reconstruction: a randomized controlled trial. Arch Plast Surg. 2022; 49(5): 587-595.-DOI: https://doi.org/10.1055/s-0042-1756337.

Bennett K.G., Qi J., Kim H.M., et al. Comparison of 2-Year complication rates among common techniques for postmastectomy breast reconstruction. JAMA Surg. 2018; 153: 901-8.-DOI: https://doi.org/10.1001/jamasurg.2018.1687.

Dyrberg D.L., Gunnarsson G.L., Bille C., et al. A simple clinical assessment of breast animation deformity following direct-to-implant breast reconstruction. Arch Plast Surg. 2019; 46: 535-43.-DOI: https://doi.org/10.5999/aps.2019.00493.

Becker H., Fregosi N. The impact of animation deformity on quality of life in post-mastectomy reconstruction patients. Aesthet Surg J. 2017; 37: 531-536.-DOI: https://doi.org/10.1093/asj/sjw264.

Oliver J.D., Knackstedt R., Gatherwright J. Optimizing pain control after implant-based breast reconstruction: a systematic review. Plast Reconstruct Surg Glob Open. 2020; 8(7): 2-2.-DOI: https://doi.org/10.1097/01.GOX.0000695984.06558.f1.

Fracol M., Feld L.N., Chiu W.K., et al. An overview of animation deformity in prosthetic breast reconstruction. Gland Surg. 2019; 8: 95-101.-DOI: 10.21037/gs.2018.09.09.

Ma I.T., Yesantharao P., Darrach H.M., et al. Diagnostic and Therapeutic Use of Botox for Breast Reconstruction. Arch Clin Med Case Rep. 2021; 5(5): 759-770.-DOI: https://doi.org/10.26502/acmcr.96550419.

Margulies I.G., Salzberg C.A. The use of acellular dermal matrix in breast reconstruction: evolution of techniques over 2 decades. Gland Surg. 2019; 8(1): 3-10.-DOI: https://doi.org/10.21037/gs.2018.10.05.

Eck D.L., Nguyen D.C., Barnes L.L., et al. Treatment of breast animation deformity in implant-based reconstruction with selective nerve ablation. Aesthetic Plast Surg. 2018; 42(6): 1472-1475.-DOI: https://doi.org/10.1007/s00266-018-1184-0.

Casella D., Lo T.F., Marcasciano M., et al. Breast animation deformity: a retrospective study on long-term and patient-reported breast-Q outcomes. Ann Plast Surg. 2021; 86(5): 512-516.-DOI: https://doi.org/10.1097/SAP.0000000000002522.

Blanco R. The ‘pecs block’: a novel technique for providing analgesia after breast surgery. Anaesthesia. 2011; 66(9): 847-848.-DOI: https://doi.org/10.1111/j.1365-2044.2011.06838.x.

Gabriel A., Sigalove S., Sigalove N.M., et al. Prepectoral revision breast reconstruction for treatment of implant-associated animation deformity: A review of 102 reconstructions. Aesthet Surg J. 2018; 38: 519-26.-DOI: https://doi.org/10.1093/asj/sjx261.

Piat J.M., Giovinazzo V., Talha A., et al.Conversion of breast implants into natural breast reconstruction: evaluating lipofilled mini dorsi flap. Plast Reconstr Surg Glob Open. 2022; 10(7): e4450.-DOI: https://doi.org/10.1097/GOX.0000000000004450.

Dressler D., Johnson E.A. Botulinum toxin therapy: past, present and future developments. J Neural Transm. 2022; 129(5-6): 829-833.-DOI: https://doi.org/10.1007/s00702-022-02494-5.

Hehr J.D., Schoenbrunner A.R., Janis J.E. The use of botulinum toxin in pain management: basic science and clinical applications. Plast Reconstr Surg. 2020; 145(3): 629e-636e.-DOI: https://doi.org/10.1097/PRS.0000000000006559.

Safarpour Y., Jabbari B. Botulinum toxin treatment of pain syndromes–an evidence based review. Toxicon. 2018; 147: 120-128.-DOI: https://doi.org/10.1016/j.toxicon.2018.01.017.

Zikiryakhodzhaev A.D., Alekseeva G.S., Reshetov I.V., et al. Botulinum toxin type A as a tool for correcting capsular contracture after reconstructive breast surgery. Plast Reconstr Surg Glob Open. 2021; 9(1): e3372.-DOI: https://doi.org/10.1097/GOX.0000000000003372.

Gabriel A., Champaneria M.C., Maxwell G.P. The efficacy of botulinum toxin A in post-mastectomy breast reconstruction: a pilot study. Aesthet Surg J. 2015; 35(4): 402-409.-DOI: https://doi.org/10.1093/asj/sjv040.

Li T., Liu Y., Zhang W. Botulinum toxin A plays an important role in the placement of implants deep within the pectoralis major muscle for mammaplasty: a systematic review and meta-analysis. Aesthetic Plast Surg. 2018; 42(6): 1519-1530.-DOI: https://doi.org/10.1007/s00266-018-1203-1.

Awadeen A., Fareed M., Elameen A.M. The impact of botulinum toxin injection on the outcomes of breast surgeries: a systematic review and meta-analysis. Aesthetic Plast Surg. 2023; 47(5): 1771-1784.-DOI: https://doi.org/10.1007/s00266-023-03466-0.

Figus A., Mazzocchi M., Dessy L.A., et al. Treatment of muscular contraction deformities with botulinum toxin type A after latissimus dorsi flap and sub-pectoral implant breast reconstruction. J Plast Reconstr Aesthet Surg. 2009; 62: 869-875.-DOI: https://doi.org/10.1016/j.bjps.2007.07.025.

Albanese A., Wissel J., Jost W.H., et al. Pain reduction in cervical dystonia following treatment with incobotulinumtoxinA: a pooled analysis. Toxins. 2023; 15: 333.-DOI: https://doi.org/10.3390/toxins15050333.

Angelo D.F., Sanz D., Maffia F., Cardoso H.J. Outcomes of IncobotulinumtoxinA injection on myalgia and arthralgia in patients undergoing temporomandibular joint arthroscopy: a randomized controlled trial. Toxins. 2023; 15: 376.-DOI: https://doi.org/10.3390/toxins15060376.

Béret M., Barry F., Garcia-Fernandez M.J., et al. Efficacy of intra-articular injection of botulinum toxin type A (IncobotulinumtoxinA) in temporomandibular joint osteoarthritis: a three-arm controlled trial in rats. Toxins. 2023; 15: 261.-DOI: https://doi.org/10.3390/toxins15040261.

Bonferta M., Heinena F., Kanovsky P. Spasticity-related pain in children/adolescents with cerebral palsy. Part 2: IncobotulinumtoxinA efficacy results from a pooled analysis. JPRM. 2023; 16: 83-89.-DOI: https://doi.org/10.3233/PRM-220020.

Camoes-Barbosa A. Efficacy of incobotulinumtoxinA for spasticity-associated pain in a series of patients with spasticity of diverse etiologies. Arch Med Res. 2023; 11(5).-DOI: https://doi.org/10.18103/mra.v11i5.3590.

Hosseini M., Asarzadegan F., Shafaee E., Alijanpour S. Trigeminal neuralgia: IncobotulinumtoxinA (Xeomin), can it decrease the pharmacological intervention? (A case series). Caspian J Intern Med. 2023; 14(2): 376-379.-DOI: https://doi.org/10.22088/cjim.14.2.376.

Miguel C., Cirera A. Retrospective study of the clinical effect of incobotulinumtoxinA for the management of myofascial pain syndrome in refractory patients. Toxicon. 2021; 203: 117-120.-DOI: https://doi.org/10.1016/j.toxicon.2021.09.022.

Villa-Munoz P., Albaladejo-Belmonte M., Nohales-Alfonso F.J., et al. Treatment of vestibulodynia with submucosal injections of incobotulinumtoxinA into targeted painful points: an open-label exploratory study. Toxins. 2023; 15: 476.-DOI: https://doi.org/10.3390/toxins15080476.

Meng J., Wang J., Lawrence G., Dolly J. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007; 120: 2864-2874.-DOI: https://doi.org/10.1242/jcs.012211.

Coelho A., Oliveira R., Rossetto O., et al. Intrathecal administration of botulinum toxin type A improves urinary bladder function and reduces pain in rats with cystitis. Eur J Pain. 2014; 18(10): 1480-9.-DOI: https://doi.org/10.1002/ejp.513.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024