Incidence of Radionecrosis Following Stereotactic Radiosurgery or Stereotactic Radiotherapy for Brain Metastases: A Meta-Analysis
##article.numberofdownloads## 67
##article.numberofdownloads## 28
##article.numberofviews## 226
pdf (Русский)
pdf suppl (Русский)

Keywords

stereotactic radiation therapy
stereotactic radiosurgery
brain metastases
radiation necrosis

How to Cite

Bliganov, P. I., Chernykh, M. V., & Ivanov, V. A. (2025). Incidence of Radionecrosis Following Stereotactic Radiosurgery or Stereotactic Radiotherapy for Brain Metastases: A Meta-Analysis. Voprosy Onkologii, 71(5), OF–2468. https://doi.org/10.37469/0507-3758-2025-71-5-OF-2468

Abstract

Introduction. The incidence of radionecrosis (RN) following stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT) using linear accelerators (LINAC) or robotic delivery systems remains incompletely characterized. In contrast to data from gamma knife-based studies, the literature on these radiotherapy (RT) modalities remains limited. This may lead to inaccurate extrapolation of RN rates observed with gamma-based therapies to populations treated with LINAC or robotic techniques, potentially misrepresenting the true incidence of this disease.

Aim. To evaluate the incidence of RN following SRS/SRT delivered via LINAC or robotic systems in patients with brain metastases.

Materials and Methods. This meta-analysis included studies published between 2015 and 2025 identified through PubMed and ScienceDirect. The primary outcome was RN incidence per lesion and per patient. Study selection followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Statistical analysis was performed using Comprehensive Meta-Analysis software (v3/v4).

Results. Ten publications met inclusion criteria. Pooled analysis demonstrated RN incidence of 7.1 % (95 % CI: 4.1-12.2) per treated lesion and 10.5 % (95 % CI: 6.8-15.8) per patient using random-effects models.

Conclusion. When indirectly compared with gamma knife outcomes, LINAC and robotic SRS/SRT demonstrate comparable RN rates. However, more studies specifically evaluating these modalities in brain metastasis patients are needed to establish more precise estimates.

https://doi.org/10.37469/0507-3758-2025-71-5-OF-2468
##article.numberofdownloads## 67
##article.numberofdownloads## 28
##article.numberofviews## 226
pdf (Русский)
pdf suppl (Русский)

References

Lupattelli M., Alì E., Ingrosso G., et al. Stereotactic radiotherapy for brain metastases: Imaging tools and dosimetric predictive factors for radionecrosis. J Pers Med. 2020; 10(3): 59.-DOI: https://doi.org/10.3390/jpm10030059.

Le Rhun E., Dhermain F., Vogin G., et al. Radionecrosis after stereotactic radiotherapy for brain metastases. Expert Rev Neurother. 2016; 16(8): 903-14.-DOI: https://doi.org/10.1080/14737175.2016.1184572.

Loo M., Pin Y., Thierry A., Clavier J.B. Single-fraction radiosurgery versus fractionated stereotactic radiotherapy in patients with brain metastases: a comparative study. Clin Exp Metastasis. 2020; 37(3): 425-434.-DOI: https://doi.org/10.1007/s10585-020-10031-5.

Page M.J., McKenzie J.E., Bossuyt P.M., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71.-DOI: https://doi.org/10.1136/bmj.n71.

Wells G.A., Shea B., O’Connell D., et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2014; 21.-URL: www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

Borenstein M. Common mistakes in meta-analysis and how to avoid them. Biostat, Inc. 2019.-URL: https://www.Meta-Analysis.com/rsm.

Borenstein M. Research Note: In a meta-analysis, the I index does not tell us how much the effect size varies across studies. J Physiother. 2020; 66(2): 135-9.-DOI: https://doi.org/10.1016/j.jphys.2020.02.011.

Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Comprehensive meta-analysis version 4. Englewood (NJ): Biostat, Inc. 2022.-URL: http://www.meta-analysis.com.

Borenstein M., Hedges L.V., Higgins J.P., Rothstein H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010; 1(2): 97-111.-DOI: https://doi.org/10.1002/jrsm.12.

Gruber I., Stark P., Weidner K., et al. Fractionated stereotactic radiotherapy of brain metastases: results of a retrospective study. Radiat Oncol. 2023; 18(1): 85.-DOI: https://doi.org/10.1186/s13014-023-02277-6.

Kawai Y., Aramaki S., Ishihara T., et al. Outcomes of 30 Gy/5 Fr hypofractionated stereotactic radiation therapy for small brain metastases (≤2 cm). Anticancer Res. 2023; 43(10): 4543-4549.-DOI: https://doi.org/10.21873/anticanres.16648.

Garg A.K., Hernandez M., Schlembach P.J., et al. A phase II clinical trial of frameless, fractionated stereotactic radiation therapy for brain metastases. JNCI Cancer Spectr. 2023; 7(6): pkad093.-DOI: https://doi.org/10.1093/jncics/pkad093.

Minniti G., Scaringi C., Paolini S., et al. Single-fraction versus multifraction (3 × 9 Gy) stereotactic radiosurgery for large (>2 cm) brain metastases: A comparative analysis of local control and risk of radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys. 2016; 95(4): 1142-8.-DOI: https://doi.org/10.1016/j.ijrobp.2016.03.013.

Doğan B., Demir H., Işık N., et al. Investigation of the risk factors in the development of radionecrosis in patients with brain metastases undergoing stereotactic radiotherapy. Br J Radiol. 2024; 97(1157): 1022-1028.-DOI: https://doi.org/10.1093/bjr/tqae051.

Gruber I., Weidner K., Treutwein M., Koelbl O. Stereotactic radiosurgery of brain metastases: a retrospective study. Radiat Oncol. 2023; 18(1): 202.-DOI: https://doi.org/10.1186/s13014-023-02389-z.

Johannwerner L., Werner E.M., Blanck O., et al. Radiation necrosis following stereotactic radiosurgery or fractionated stereotactic radiotherapy with high biologically effective doses for large brain metastases. Biology (Basel). 2023; 12(5): 655.-DOI: https://doi.org/10.3390/biology12050655.

Hirata M., Yasui K., Oota N., et al. Feasibility of linac-based fractionated stereotactic radiotherapy and stereotactic radiosurgery for patients with up to ten brain metastases. Radiat Oncol. 2022; 17(1): 213.-DOI: https://doi.org/10.1186/s13014-022-02185-1. Erratum in: Radiat Oncol. 2023; 18(1): 45.-DOI: https://doi.org/10.1186/s13014-023-02206-7.

Minniti G., Anzellini D., Reverberi C., et al. Stereotactic radiosurgery combined with nivolumab or Ipilimumab for patients with melanoma brain metastases: evaluation of brain control and toxicity. J Immunother Cancer. 2019; 7(1): 102.-DOI: https://doi.org/10.1186/s40425-019-0588-y.

Matsuda R., Hasegawa M., Tamamoto T., et al. Linac-based stereotactic radiosurgery and fractionated stereotactic radiotherapy with a micro-multileaf collimator for brain metastasis in the primary motor cortex. J Radiat Res. 2022; 63(1): 63-70.-DOI: https://doi.org/10.1093/jrr/rrab111.

Sneed P.K., Mendez J., Vemer-van den Hoek J.G., et al. Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg. 2015; 123(2): 373-86.-DOI: https://doi.org/10.3171/2014.10.JNS141610.

Блиганов П.И., Иванов В.А., Черных М.В., et al. Стереотаксическая лучевая терапия метастазов в головном мозге: эффективность и токсичность лечения. Хирургия и онкология. 2025; 15(2): 32-40.-DOI: https://doi.org/10.17650/2949-5857-2025-15-2-32-40. [Bliganov P.I., Ivanov V.A., Chernykh M.V., et al. Stereotactic radiation therapy of brain metastases: efficacy and toxicity of treatment. Surgery and Oncology. 2025; 15(2): 32-40.-DOI: https://doi.org/10.17650/2949-5857-2025-15-2-32-40 (in Rus)].

Weingarten N., Kruser T.J., Bloch O. Symptomatic radiation necrosis in brain metastasis patients treated with stereotactic radiosurgery and immunotherapy. Clin Neurol Neurosurg. 2019; 179: 14-18.-DOI: https://doi.org/10.1016/j.clineuro.2019.02.010.

Sharma M., Jia X., Ahluwalia M. First follow-up radiographic response is one of the predictors of local tumor progression and radiation necrosis after stereotactic radiosurgery for brain metastases. Cancer Med. 2017; 6(9): 2076-2086.-DOI: https://doi.org/10.1002/cam4.1149.

Daisne J.F., De Ketelaere C., Jamart J. The individual risk of symptomatic radionecrosis after brain metastasis radiosurgery is predicted by a continuous function of the V12Gy. Clin Transl Radiat Oncol. 2021; 27: 70-4.-DOI: https://doi.org/10.1016/j.ctro.2021.01.003.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2025